Upgrading CZTSSe solar cell performance through numerical investigation of Cu-based hole transport layers

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
{"title":"Upgrading CZTSSe solar cell performance through numerical investigation of Cu-based hole transport layers","authors":"","doi":"10.1016/j.micrna.2024.207960","DOIUrl":null,"url":null,"abstract":"<div><p>A material like CZTSSe, belonging to the Kesterite family, serves as a guiding light for researchers due to its ability to tunable bandgap and exhibit a high optical coefficient exceeding 10<sup>4</sup> cm<sup>−1</sup>, crucial for solar cell applications. These characteristics not only render it suitable for single-junction solar cells but also enhance its overall acceptance. Meanwhile, the material Cu<sub>2</sub>ZnSn(S<sub>x</sub>, Se<sub>1-x</sub>)<sub>4</sub> (CZTSSe) has increasingly captivated the attention of researchers owing to its cost-effectiveness, eco-friendliness, high absorption coefficient, and adjustable bandgap. This paper explores the conventional structure of CZTSSe solar cells comprising Al:ZnO/Zn(O,S)/CZTSSe/different Cu-based HTL, underscoring the importance of identifying an optimal HTL. Consequently, a comparative analysis of solar cells with various HTLs is conducted, facilitated by the SCAPS-1D numerical simulation software for property evaluation and efficiency optimization. Furthermore, varying parameters such as absorber layer thickness, defect densities, doping concentrations, and temperature shed light on the responses of open-circuit voltage (V<sub>OC</sub>), short-circuit current (J<sub>SC</sub>), fill factor (FF), and efficiency (PCE) of the solar cell. Among different Cu-based HTLs, Cu<sub>2</sub>O emerges as a promising candidate for maximizing CZTSSe-based solar cell performance. Additionally, the discussion delves into the impacts of layer parameters like thickness, doping density, and carrier concentrations. Following device optimization, considerations extend to operating temperature variations and the effects of series and shunt resistance. Notably, our endeavors culminate in cell performance metrics: efficiency = 30.65 %, short-circuit current density = 42.15 mA/cm<sup>2</sup>, open-circuit voltage = 0.84 V, and fill factor = 85.60 %.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

A material like CZTSSe, belonging to the Kesterite family, serves as a guiding light for researchers due to its ability to tunable bandgap and exhibit a high optical coefficient exceeding 104 cm−1, crucial for solar cell applications. These characteristics not only render it suitable for single-junction solar cells but also enhance its overall acceptance. Meanwhile, the material Cu2ZnSn(Sx, Se1-x)4 (CZTSSe) has increasingly captivated the attention of researchers owing to its cost-effectiveness, eco-friendliness, high absorption coefficient, and adjustable bandgap. This paper explores the conventional structure of CZTSSe solar cells comprising Al:ZnO/Zn(O,S)/CZTSSe/different Cu-based HTL, underscoring the importance of identifying an optimal HTL. Consequently, a comparative analysis of solar cells with various HTLs is conducted, facilitated by the SCAPS-1D numerical simulation software for property evaluation and efficiency optimization. Furthermore, varying parameters such as absorber layer thickness, defect densities, doping concentrations, and temperature shed light on the responses of open-circuit voltage (VOC), short-circuit current (JSC), fill factor (FF), and efficiency (PCE) of the solar cell. Among different Cu-based HTLs, Cu2O emerges as a promising candidate for maximizing CZTSSe-based solar cell performance. Additionally, the discussion delves into the impacts of layer parameters like thickness, doping density, and carrier concentrations. Following device optimization, considerations extend to operating temperature variations and the effects of series and shunt resistance. Notably, our endeavors culminate in cell performance metrics: efficiency = 30.65 %, short-circuit current density = 42.15 mA/cm2, open-circuit voltage = 0.84 V, and fill factor = 85.60 %.

通过数值研究铜基空穴传输层提升 CZTSSe 太阳能电池性能
像 CZTSSe 这样属于 Kesterite 家族的材料,因其具有可调带隙的能力和超过 104 cm-1 的高光学系数而成为研究人员的指路明灯,这对太阳能电池的应用至关重要。这些特性不仅使其适用于单结太阳能电池,还提高了其整体接受度。与此同时,Cu2ZnSn(Sx, Se1-x)4(CZTSSe)材料因其成本效益、生态友好性、高吸收系数和可调带隙而日益受到研究人员的关注。本文探讨了由 Al:ZnO/Zn(O,S)/CZTSSe/不同铜基 HTL 组成的 CZTSSe 太阳能电池的传统结构,强调了确定最佳 HTL 的重要性。因此,在 SCAPS-1D 数值模拟软件的帮助下,对采用不同 HTL 的太阳能电池进行了比较分析,以进行性能评估和效率优化。此外,不同的参数,如吸收层厚度、缺陷密度、掺杂浓度和温度,都会对太阳能电池的开路电压(VOC)、短路电流(JSC)、填充因子(FF)和效率(PCE)产生影响。在不同的铜基 HTL 中,Cu2O 有望成为最大化 CZTSSe 太阳能电池性能的候选材料。此外,讨论还深入探讨了层参数(如厚度、掺杂密度和载流子浓度)的影响。在器件优化之后,我们还考虑了工作温度变化以及串联和并联电阻的影响。值得注意的是,我们的努力最终实现了电池性能指标:效率 = 30.65%,短路电流密度 = 42.15 mA/cm2,开路电压 = 0.84 V,填充因子 = 85.60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信