Secure pinning synchronization on aperiodic intermittent event-triggered control in discrete-time complex networks against multi-pattern link attacks

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Wenying Yuan, Qian Dong, Tianchi Tong, Jinsheng Sun
{"title":"Secure pinning synchronization on aperiodic intermittent event-triggered control in discrete-time complex networks against multi-pattern link attacks","authors":"Wenying Yuan,&nbsp;Qian Dong,&nbsp;Tianchi Tong,&nbsp;Jinsheng Sun","doi":"10.1016/j.cnsns.2024.108303","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the problem of secure synchronization in aperiodic intermittent event-triggered pinning control for discrete-time complex networks (DCNs) against multi-pattern link attacks. Firstly, in order to reduce communication burden and control cost, a novel aperiodic intermittent event-triggered control (AIEC) with discontinuous characteristics is designed based on periodic sampling, where triggering instants are determined by the intermittent control (IC). Secondly, multiple pattern attack are modeled, as they can interrupt different edges and change the network topology. In addition, multi-pattern attacks for each link are independent and their impact on the coupling topology is analyzed. Thirdly, under destroyed network topology, this paper designs aperiodic intermittent event-triggered pinning control (AIEPC) by combining pinning control (PC) with the AIEC. Meanwhile, based on PC, the isolated node and pinned nodes form a like-directed spanning tree with an asymmetrical coupling matrix, where rooted at the isolated node and only directed connections between the isolated node and pinned nodes. Fourthly, using the segmentation analysis method and the inequality iteration technique, a sufficient condition for exponential synchronization of error system is obtained by considering the instants neighboring different intermittent control and attack intervals. Finally, a simulation example on Chua’s circuit network is provided to verify the validity of the theoretical results achieved in this paper.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042400488X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the problem of secure synchronization in aperiodic intermittent event-triggered pinning control for discrete-time complex networks (DCNs) against multi-pattern link attacks. Firstly, in order to reduce communication burden and control cost, a novel aperiodic intermittent event-triggered control (AIEC) with discontinuous characteristics is designed based on periodic sampling, where triggering instants are determined by the intermittent control (IC). Secondly, multiple pattern attack are modeled, as they can interrupt different edges and change the network topology. In addition, multi-pattern attacks for each link are independent and their impact on the coupling topology is analyzed. Thirdly, under destroyed network topology, this paper designs aperiodic intermittent event-triggered pinning control (AIEPC) by combining pinning control (PC) with the AIEC. Meanwhile, based on PC, the isolated node and pinned nodes form a like-directed spanning tree with an asymmetrical coupling matrix, where rooted at the isolated node and only directed connections between the isolated node and pinned nodes. Fourthly, using the segmentation analysis method and the inequality iteration technique, a sufficient condition for exponential synchronization of error system is obtained by considering the instants neighboring different intermittent control and attack intervals. Finally, a simulation example on Chua’s circuit network is provided to verify the validity of the theoretical results achieved in this paper.

离散时间复杂网络中的非周期性间歇事件触发控制上的安全引脚同步,对抗多模式链路攻击
本文研究了离散时间复杂网络(DCN)的非周期性间歇事件触发引脚控制中的安全同步问题,以对抗多模式链路攻击。首先,为了减少通信负担和控制成本,本文设计了一种基于周期采样的具有不连续特性的新型非周期间歇事件触发控制(AIEC),其触发时刻由间歇控制(IC)决定。其次,对多重模式攻击进行建模,因为它们会打断不同的边缘并改变网络拓扑结构。此外,每个链路的多重模式攻击都是独立的,并分析了它们对耦合拓扑的影响。第三,在网络拓扑被破坏的情况下,本文通过将针刺控制(PC)与 AIEC 相结合,设计了非周期性间歇事件触发针刺控制(AIEPC)。同时,在 PC 的基础上,隔离节点和针刺节点形成了一棵具有非对称耦合矩阵的同向生成树,该树以隔离节点为根,隔离节点和针刺节点之间只有定向连接。第四,利用分段分析方法和不等式迭代技术,考虑不同间歇控制和攻击间隔相邻的时刻,得到了误差系统指数同步的充分条件。最后,本文提供了一个 Chua 电路网络的仿真实例,以验证本文理论结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信