{"title":"Preparation and characterization of UV-curable composite containing nano silica for glass-to-glass bonding","authors":"","doi":"10.1016/j.porgcoat.2024.108751","DOIUrl":null,"url":null,"abstract":"<div><p>Glass is a transparent and geometrically ordered element in architecture. Glass bonding can be classified into adhesive, layered, and mechanical categories. One of the best bonding materials for glass applications is adhesive. The preparation and investigation of Ultraviolet (UV)-curable composites for glass-to-glass bonding is the goal of this research. The investigation focused on the effect of raw material type and weight percentage on mechanical properties. Epoxy acrylate resin was employed as an oligomer in this study. Trimethylolpropane triacrylate (TMPTA), tripropyleneglycol triacrylate (TPGDA), and pentaerythritol tetraacrylate (PETA) were used as monomers. As photoinitiators, were used bis (2,4,6 trimethylbenzoyl)-phenylphosphine oxide, hydroxycyclohexyl phenylketone, and 2,4,6-trimethylbenzoyl diphenyl phosphineoxide. Benzophenone, acrylic acid, nano silica, and trimethoxysilylpropyl methacrylate (TMSPMA) were used as the additives. The mechanical properties of the samples were studied using compressive and shear tests. The degree of conversion (DC) was obtained using Fourier transform infrared spectroscopy (FTIR). The mechanical behavior of the samples were measured as a function of temperature using dynamic mechanical thermal analysis (DMTA); and the distribution of nanoparticles was examined using scanning electron microscopy (SEM). The results showed that the sample containing 4 wt% nano silica, which also contained 24 wt% PETA and 7 wt% TMSPMA, has the best mechanical properties with 0.42 and 0.63 MPa compressive and shear strength, respectively. In the FTIR, was observed an increase of nano silica from the lowest (1 wt%) to the highest amount (5 wt%), the DC current decreased by 11 %. In the DMTA analysis, it was observed that an increase of nano silica from 1 to 5 wt%, the storage modulus increased by 41 %. The highest loss modulus and loss temperature were related to the samples containing 1 and 2 wt% nano silica with 221 MPa and 113.8 °C. Finally, the best distribution of nanoparticles was observed in the sample containing 1 wt% nano silica. In the SEM images, agglomeration of nanoparticles was seen in the sample containing 5 wt% nano silica.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024005435","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Glass is a transparent and geometrically ordered element in architecture. Glass bonding can be classified into adhesive, layered, and mechanical categories. One of the best bonding materials for glass applications is adhesive. The preparation and investigation of Ultraviolet (UV)-curable composites for glass-to-glass bonding is the goal of this research. The investigation focused on the effect of raw material type and weight percentage on mechanical properties. Epoxy acrylate resin was employed as an oligomer in this study. Trimethylolpropane triacrylate (TMPTA), tripropyleneglycol triacrylate (TPGDA), and pentaerythritol tetraacrylate (PETA) were used as monomers. As photoinitiators, were used bis (2,4,6 trimethylbenzoyl)-phenylphosphine oxide, hydroxycyclohexyl phenylketone, and 2,4,6-trimethylbenzoyl diphenyl phosphineoxide. Benzophenone, acrylic acid, nano silica, and trimethoxysilylpropyl methacrylate (TMSPMA) were used as the additives. The mechanical properties of the samples were studied using compressive and shear tests. The degree of conversion (DC) was obtained using Fourier transform infrared spectroscopy (FTIR). The mechanical behavior of the samples were measured as a function of temperature using dynamic mechanical thermal analysis (DMTA); and the distribution of nanoparticles was examined using scanning electron microscopy (SEM). The results showed that the sample containing 4 wt% nano silica, which also contained 24 wt% PETA and 7 wt% TMSPMA, has the best mechanical properties with 0.42 and 0.63 MPa compressive and shear strength, respectively. In the FTIR, was observed an increase of nano silica from the lowest (1 wt%) to the highest amount (5 wt%), the DC current decreased by 11 %. In the DMTA analysis, it was observed that an increase of nano silica from 1 to 5 wt%, the storage modulus increased by 41 %. The highest loss modulus and loss temperature were related to the samples containing 1 and 2 wt% nano silica with 221 MPa and 113.8 °C. Finally, the best distribution of nanoparticles was observed in the sample containing 1 wt% nano silica. In the SEM images, agglomeration of nanoparticles was seen in the sample containing 5 wt% nano silica.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.