{"title":"Renormalization in Lorenz maps - completely invariant sets and periodic orbits","authors":"Łukasz Cholewa , Piotr Oprocha","doi":"10.1016/j.aim.2024.109890","DOIUrl":null,"url":null,"abstract":"<div><p>The paper deals with dynamics of expanding Lorenz maps, which appear in a natural way as Poincarè maps in geometric models of well-known Lorenz attractor. Using both analytical and symbolic approaches, we study connections between periodic points, completely invariant sets and renormalizations. We show that some renormalizations may be connected with completely invariant sets while some others don't. We provide an algorithm to detect the renormalizations that can be recovered from completely invariant sets. Furthermore, we discuss the importance of distinguish one-side and double-side preimage. This way we provide a better insight into the structure of renormalizations in Lorenz maps. These relations remained unnoticed in the literature, therefore we are correcting some gaps existing in the literature, improving and completing to some extent the description of possible dynamics in this important field of study.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The paper deals with dynamics of expanding Lorenz maps, which appear in a natural way as Poincarè maps in geometric models of well-known Lorenz attractor. Using both analytical and symbolic approaches, we study connections between periodic points, completely invariant sets and renormalizations. We show that some renormalizations may be connected with completely invariant sets while some others don't. We provide an algorithm to detect the renormalizations that can be recovered from completely invariant sets. Furthermore, we discuss the importance of distinguish one-side and double-side preimage. This way we provide a better insight into the structure of renormalizations in Lorenz maps. These relations remained unnoticed in the literature, therefore we are correcting some gaps existing in the literature, improving and completing to some extent the description of possible dynamics in this important field of study.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.