Wenjie Zhou , Xian Jin , Lei Ding , Ji Ma , Huihao Su , An Zhao
{"title":"Research on vibration signal decomposition of cracked rotor-bearing system with double-disk based on CEEMDAN-CWT","authors":"Wenjie Zhou , Xian Jin , Lei Ding , Ji Ma , Huihao Su , An Zhao","doi":"10.1016/j.apacoust.2024.110254","DOIUrl":null,"url":null,"abstract":"<div><p>In the actual working process, the source of vibration signal is not only the rotor itself, so the detected vibration signal will become complicated. This complex signal makes it difficult to accurately measure the existence of crack. In this paper, a novel method, which includes complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and continuous wavelet transform (CWT), is proposed to analyze the cracked rotor-rolling bearing system. The CEEMDAN-CWT successfully separates the vibration signal of the rotor itself from the original signal and provides results similar to the simulation signal. At the speed below 2000 rpm, the 2X frequency difference between cracked rotor and healthy rotor in CEEMDAN-CWT spectrum is about 1, while the difference of FFT spectrum of original signal is about 0.6, which shows the superiority of the novel method in extracting rotor vibration signals from complex vibration signals.</p></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004055","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the actual working process, the source of vibration signal is not only the rotor itself, so the detected vibration signal will become complicated. This complex signal makes it difficult to accurately measure the existence of crack. In this paper, a novel method, which includes complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and continuous wavelet transform (CWT), is proposed to analyze the cracked rotor-rolling bearing system. The CEEMDAN-CWT successfully separates the vibration signal of the rotor itself from the original signal and provides results similar to the simulation signal. At the speed below 2000 rpm, the 2X frequency difference between cracked rotor and healthy rotor in CEEMDAN-CWT spectrum is about 1, while the difference of FFT spectrum of original signal is about 0.6, which shows the superiority of the novel method in extracting rotor vibration signals from complex vibration signals.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.