A great diversity of ROBO4 expression and regulations identified by data mining and transgene mice

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY
{"title":"A great diversity of ROBO4 expression and regulations identified by data mining and transgene mice","authors":"","doi":"10.1016/j.gep.2024.119375","DOIUrl":null,"url":null,"abstract":"<div><p>ROBO4 involves in the stabilization of blood vessel and mediates the migration of hematopoietic stem cell and newborn neuron. However, the patterns of expression and regulation are not quite clear. To resolve this, we analyzed the single cell sequence data, and confirmed that <em>Robo4</em> mainly expresses in various endothelial cells, but also in epithelial cells, pericytes, and stem or progenitor cells of bone marrow, fibroblast cells/mesenchymal stem cell of adipose tissues, muscle cells and neuron. <em>Robo4</em> expressions in endothelial cells derived from capillary vessel, tip/stalk/activated endothelial cells were higher than that in artery and large vein (matured endothelial cells). On the other hand, via mining the gene expression data deposited in the NCBI Gene Expression Omnibus database as well as National Genomics Data Center (NGDC), we uncovered that the expression of <em>Robo4</em> were regulated by different stimulus and variable in diseases’ condition.Moreover, we constructed enhanced GFP (eGFP) transgene mouse controlled by <em>Robo4</em> promoter using CRISPR/CAS9 system. We found GFP signals in many cell types from the embryonic section, confirming a widely expression of <em>Robo4</em>. Together, <em>Robo4</em> widely and dynamically express in multiple cell types, and can be regulated by diverse factors.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X24000218","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ROBO4 involves in the stabilization of blood vessel and mediates the migration of hematopoietic stem cell and newborn neuron. However, the patterns of expression and regulation are not quite clear. To resolve this, we analyzed the single cell sequence data, and confirmed that Robo4 mainly expresses in various endothelial cells, but also in epithelial cells, pericytes, and stem or progenitor cells of bone marrow, fibroblast cells/mesenchymal stem cell of adipose tissues, muscle cells and neuron. Robo4 expressions in endothelial cells derived from capillary vessel, tip/stalk/activated endothelial cells were higher than that in artery and large vein (matured endothelial cells). On the other hand, via mining the gene expression data deposited in the NCBI Gene Expression Omnibus database as well as National Genomics Data Center (NGDC), we uncovered that the expression of Robo4 were regulated by different stimulus and variable in diseases’ condition.Moreover, we constructed enhanced GFP (eGFP) transgene mouse controlled by Robo4 promoter using CRISPR/CAS9 system. We found GFP signals in many cell types from the embryonic section, confirming a widely expression of Robo4. Together, Robo4 widely and dynamically express in multiple cell types, and can be regulated by diverse factors.

通过数据挖掘和转基因小鼠确定了 ROBO4 表达和调控的多样性。
ROBO4 参与血管的稳定,并介导造血干细胞和新生神经细胞的迁移。然而,其表达和调控模式并不十分明确。为了解决这个问题,我们分析了单细胞序列数据,证实 Robo4 主要在各种内皮细胞中表达,也在上皮细胞、周细胞、骨髓干细胞或祖细胞、成纤维细胞/脂肪组织间充质干细胞、肌肉细胞和神经元中表达。来自毛细血管的内皮细胞、尖端/茎秆/活化内皮细胞的 Robo4 表达高于动脉和大静脉(成熟内皮细胞)。此外,我们还利用CRISPR/CAS9系统构建了由Robo4启动子控制的增强型GFP(eGFP)转基因小鼠。我们还利用 CRISPR/CAS9 系统构建了由 Robo4 启动子控制的增强型 GFP(eGFP)转基因小鼠,在胚胎切片的多种细胞类型中发现了 GFP 信号,证实了 Robo4 的广泛表达。总之,Robo4 在多种细胞类型中广泛动态表达,并可受多种因素调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gene Expression Patterns
Gene Expression Patterns 生物-发育生物学
CiteScore
2.30
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include: -In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression -Temporal studies of large gene sets during development -Transgenic studies to study cell lineage in tissue formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信