Zihan Yu, Qiaode Jeffrey Ge, Mark P Langer, Mona Arbab
{"title":"On the Construction of Confidence Regions for Uncertain Planar Displacements.","authors":"Zihan Yu, Qiaode Jeffrey Ge, Mark P Langer, Mona Arbab","doi":"10.1115/1.4064281","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studies the statistical concept of confidence region for a set of uncertain planar displacements with a certain level of confidence or probabilities. Three different representations of planar displacements are compared in this context and it is shown that the most commonly used representation based on the coordinates of the moving frame is the least effective. The other two methods, namely the exponential coordinates and planar quaternions, are equally effective in capturing the group structure of SE(2). However, the former relies on the exponential map to parameterize an element of SE(2), while the latter uses a quadratic map, which is often more advantageous computationally. This paper focus on the use of planar quaternions to develop a method for computing the confidence region for a given set of uncertain planar displacements. Principal component analysis (PCA) is another tool used in our study to capture the dominant direction of movements. To demonstrate the effectiveness of our approach, we compare it to an existing method called rotational and translational confidence limit (RTCL). Our examples show that the planar quaternion formulation leads to a swept volume that is more compact and more effective than the RTCL method, especially in cases when off-axis rotation is present.</p>","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"16 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344949/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4064281","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the statistical concept of confidence region for a set of uncertain planar displacements with a certain level of confidence or probabilities. Three different representations of planar displacements are compared in this context and it is shown that the most commonly used representation based on the coordinates of the moving frame is the least effective. The other two methods, namely the exponential coordinates and planar quaternions, are equally effective in capturing the group structure of SE(2). However, the former relies on the exponential map to parameterize an element of SE(2), while the latter uses a quadratic map, which is often more advantageous computationally. This paper focus on the use of planar quaternions to develop a method for computing the confidence region for a given set of uncertain planar displacements. Principal component analysis (PCA) is another tool used in our study to capture the dominant direction of movements. To demonstrate the effectiveness of our approach, we compare it to an existing method called rotational and translational confidence limit (RTCL). Our examples show that the planar quaternion formulation leads to a swept volume that is more compact and more effective than the RTCL method, especially in cases when off-axis rotation is present.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.