{"title":"Microbiota-gut-brain axis: interplay between microbiota, barrier function and lymphatic system.","authors":"Miaomiao Zhuang, Xun Zhang, Jun Cai","doi":"10.1080/19490976.2024.2387800","DOIUrl":null,"url":null,"abstract":"<p><p>The human gastrointestinal tract, boasting the most diverse microbial community, harbors approximately 100 trillion microorganisms comprising viruses, bacteria, fungi, and archaea. The profound genetic and metabolic capabilities of the gut microbiome underlie its involvement in nearly every facet of human biology, from health maintenance and development to aging and disease. Recent recognition of microbiota - gut - brain axis, referring to the bidirectional communication network between gut microbes and their host, has led to a surge in interdisciplinary research. This review begins with an overview of the current understandings regarding the influence of gut microbes on intestinal and blood-brain barrier integrity. Subsequently, we discuss the mechanisms of the microbiota - gut - brain axis, examining the role of gut microbiota-related neural transmission, metabolites, gut hormones and immunity. We propose the concept of microbiota-mediated multi-barrier modulation in the potential treatment in gastrointestinal and neurological disorders. Furthermore, the role of lymphatic network in the development and maintenance of barrier function is discussed, providing insights into lesser-known conduits of communication between the microbial ecosystem within the gut and the brain. In the final section, we conclude by describing the ongoing frontiers in understanding of the microbiota - gut - brain axis's impact on human health and disease.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2387800","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human gastrointestinal tract, boasting the most diverse microbial community, harbors approximately 100 trillion microorganisms comprising viruses, bacteria, fungi, and archaea. The profound genetic and metabolic capabilities of the gut microbiome underlie its involvement in nearly every facet of human biology, from health maintenance and development to aging and disease. Recent recognition of microbiota - gut - brain axis, referring to the bidirectional communication network between gut microbes and their host, has led to a surge in interdisciplinary research. This review begins with an overview of the current understandings regarding the influence of gut microbes on intestinal and blood-brain barrier integrity. Subsequently, we discuss the mechanisms of the microbiota - gut - brain axis, examining the role of gut microbiota-related neural transmission, metabolites, gut hormones and immunity. We propose the concept of microbiota-mediated multi-barrier modulation in the potential treatment in gastrointestinal and neurological disorders. Furthermore, the role of lymphatic network in the development and maintenance of barrier function is discussed, providing insights into lesser-known conduits of communication between the microbial ecosystem within the gut and the brain. In the final section, we conclude by describing the ongoing frontiers in understanding of the microbiota - gut - brain axis's impact on human health and disease.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.