{"title":"Integrated analysis reveals NLRC4 as a potential biomarker in sepsis pathogenesis","authors":"Chunhui Jiang, Jiani Chen, Jiaqing Xu, Chen Chen, Hongguo Zhu, Yinghe Xu, Hui Zhao, Jiaxi Chen","doi":"10.1038/s41435-024-00293-4","DOIUrl":null,"url":null,"abstract":"Sepsis remains a significant global health burden and contributor to mortality, yet the precise molecular mechanisms underlying the immune response are not fully elucidated. To gain insight into this issue, we performed a comprehensive analysis using a variety of techniques including bulk RNA sequencing, single-cell RNA sequencing, and enzyme-linked immunosorbent assay (ELISA). We performed enrichment analysis of differentially expressed genes in sepsis and healthy individuals by utilizing Gene Ontology (GO) analysis and indicated significant enrichment of immune-related response. Following Weighted Gene Co-Expression Network Analysis (WGCNA) and protein-protein interaction analysis (PPI) were used to identify key immune-related hub genes and validated by ELISA to show that NLRC4 is highly expressed in sepsis. Additionally, an analysis of scRNA-seq data from newly diagnosed sepsis, sepsis diagnosis at 6 hours, and healthy samples demonstrates a significant increase in both the expression levels and proportions of NLRC4 in sepsis monocytes and neutrophils. In addition, using pySCENIC we identified upstream transcription factors that regulate NLRC4. Our study provides valuable insights into the identification of NLRC4 in peripheral blood as a potential candidate gene for the diagnosis and treatment of sepsis.","PeriodicalId":12691,"journal":{"name":"Genes and immunity","volume":"25 5","pages":"397-408"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and immunity","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41435-024-00293-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis remains a significant global health burden and contributor to mortality, yet the precise molecular mechanisms underlying the immune response are not fully elucidated. To gain insight into this issue, we performed a comprehensive analysis using a variety of techniques including bulk RNA sequencing, single-cell RNA sequencing, and enzyme-linked immunosorbent assay (ELISA). We performed enrichment analysis of differentially expressed genes in sepsis and healthy individuals by utilizing Gene Ontology (GO) analysis and indicated significant enrichment of immune-related response. Following Weighted Gene Co-Expression Network Analysis (WGCNA) and protein-protein interaction analysis (PPI) were used to identify key immune-related hub genes and validated by ELISA to show that NLRC4 is highly expressed in sepsis. Additionally, an analysis of scRNA-seq data from newly diagnosed sepsis, sepsis diagnosis at 6 hours, and healthy samples demonstrates a significant increase in both the expression levels and proportions of NLRC4 in sepsis monocytes and neutrophils. In addition, using pySCENIC we identified upstream transcription factors that regulate NLRC4. Our study provides valuable insights into the identification of NLRC4 in peripheral blood as a potential candidate gene for the diagnosis and treatment of sepsis.
期刊介绍:
Genes & Immunity emphasizes studies investigating how genetic, genomic and functional variations affect immune cells and the immune system, and associated processes in the regulation of health and disease. It further highlights articles on the transcriptional and posttranslational control of gene products involved in signaling pathways regulating immune cells, and protective and destructive immune responses.