Soumadip Das, Vinod B Vanarse, Dipankar Bandyopadhyay
{"title":"Tailored micromixing in chemically patterned microchannels undergoing electromagnetohydrodynamic flow.","authors":"Soumadip Das, Vinod B Vanarse, Dipankar Bandyopadhyay","doi":"10.1063/5.0209606","DOIUrl":null,"url":null,"abstract":"<p><p>The study unveils a simple, non-invasive method to perform micromixing with the help of spatiotemporal variation in the Lorentz force inside a microchannel decorated with chemically heterogeneous walls. Computational fluid dynamics simulations have been utilized to investigate micromixing under the coupled influence of electric and magnetic fields, namely, electromagnetohydrodynamics, to alter the direction of the Lorentz force at the specific locations by creating the reverse flow zones where the pressure gradient, <math><mi>∇</mi> <mi>p</mi> <mo>=</mo> <mn>0</mn></math> . The study explores the impact of periodicity, distribution, and size of electrodes alongside the magnitude of applied field intensity, the flow rate of the fluid, and the nature of the electric field on the generation of the mixing vortices and their strength inside the microchannels. The results illustrate that the wall heterogeneities can indeed enforce the formation of localized on-demand vortices when the strength of the localized reverse flow overcomes the inertia of the mainstream flow. In such a scenario, while the vortex size and strength are found to increase with the size of the heterogeneous electrodes and field intensities, the number of vortices increases with the number of heterogeneous electrodes decorated on the channel wall. The presence of a non-zero pressure-driven inflow velocity is found to subdue the strength of the vortices to restrict the mixing facilitated by the localized variation of the Lorentz force. Interestingly, the usage of an alternating current (AC) electric field is found to provide an additional non-invasive control on the mixing vortices by enabling periodic changes in their direction of rotation. A case study in this regard discloses the possibility of rapid mixing with the usage of an AC electric field for a pair of miscible fluids inside a microchannel.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0209606","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The study unveils a simple, non-invasive method to perform micromixing with the help of spatiotemporal variation in the Lorentz force inside a microchannel decorated with chemically heterogeneous walls. Computational fluid dynamics simulations have been utilized to investigate micromixing under the coupled influence of electric and magnetic fields, namely, electromagnetohydrodynamics, to alter the direction of the Lorentz force at the specific locations by creating the reverse flow zones where the pressure gradient, . The study explores the impact of periodicity, distribution, and size of electrodes alongside the magnitude of applied field intensity, the flow rate of the fluid, and the nature of the electric field on the generation of the mixing vortices and their strength inside the microchannels. The results illustrate that the wall heterogeneities can indeed enforce the formation of localized on-demand vortices when the strength of the localized reverse flow overcomes the inertia of the mainstream flow. In such a scenario, while the vortex size and strength are found to increase with the size of the heterogeneous electrodes and field intensities, the number of vortices increases with the number of heterogeneous electrodes decorated on the channel wall. The presence of a non-zero pressure-driven inflow velocity is found to subdue the strength of the vortices to restrict the mixing facilitated by the localized variation of the Lorentz force. Interestingly, the usage of an alternating current (AC) electric field is found to provide an additional non-invasive control on the mixing vortices by enabling periodic changes in their direction of rotation. A case study in this regard discloses the possibility of rapid mixing with the usage of an AC electric field for a pair of miscible fluids inside a microchannel.
该研究揭示了一种简单、非侵入性的方法,可借助在装饰有化学异质壁的微通道内洛伦兹力的时空变化来实现微混合。利用计算流体动力学模拟研究了在电场和磁场(即电磁流体力学)耦合影响下的微混合,通过在压力梯度∇ p = 0 的地方创建反向流动区来改变特定位置的洛伦兹力方向。研究探讨了电极的周期性、分布和大小、外加电场强度的大小、流体的流速以及电场的性质对微通道内混合涡流的产生及其强度的影响。结果表明,当局部反向流的强度超过主流流的惯性时,壁面异质性确实可以强制形成局部按需涡流。在这种情况下,虽然涡旋的大小和强度会随着异质电极的大小和场强度的增加而增加,但涡旋的数量会随着装饰在通道壁上的异质电极数量的增加而增加。研究发现,非零压力驱动的流入速度会抑制涡旋的强度,从而限制洛伦兹力局部变化所促进的混合。有趣的是,研究还发现使用交流(AC)电场可以通过周期性改变混合涡旋的旋转方向,对其进行额外的非侵入式控制。这方面的一个案例研究揭示了在微通道内使用交流电场对一对混溶流体进行快速混合的可能性。
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...