Exploring the utility of ultrasound to assess disuse atrophy in different muscles of the lower leg.

IF 8.9 1区 医学
Edward J Hardy, Joseph J Bass, Thomas B Inns, Mathew Piasecki, Jessica Piasecki, Craig Sale, Robert H Morris, Jonathan N Lund, Ken Smith, Daniel J Wilkinson, Philip J Atherton, Bethan E Phillips
{"title":"Exploring the utility of ultrasound to assess disuse atrophy in different muscles of the lower leg.","authors":"Edward J Hardy, Joseph J Bass, Thomas B Inns, Mathew Piasecki, Jessica Piasecki, Craig Sale, Robert H Morris, Jonathan N Lund, Ken Smith, Daniel J Wilkinson, Philip J Atherton, Bethan E Phillips","doi":"10.1002/jcsm.13583","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skeletal muscle is a highly plastic tissue crucial for many functions associated with whole-body health across the life course. Magnetic resonance imaging (MRI) is the current gold standard for measuring skeletal muscle size. However, MRI is expensive, and access to facilities is often limited. B-mode ultrasonography (U/S) has been proposed as a potential alternative to MRI for the assessment of muscle size. However, to date, no work has explored the utility of U/S to assess disuse muscle atrophy (DMA) across muscles with different atrophy susceptibility profiles, an omission which may limit the clinical application of previous work.</p><p><strong>Methods: </strong>To address this significant knowledge gap, 10 young men (22 ±  years, 24.1 ± 2.3 kg/m<sup>2</sup>) underwent 15-day unilateral leg immobilization using a knee-brace and air boot. Cross-sectional area (CSA) and muscle thickness (MT) of the tibialis anterior (TA) and medial gastrocnemius (MG) were assessed via U/S before and after immobilization, with CSA and muscle volume assessed via MRI.</p><p><strong>Results: </strong>With both muscles combined, there were good correlations between each U/S and MRI measure, both before (e.g., CSA<sub>MRI</sub> vs. MT<sub>U/S</sub> and CSA<sub>U/S</sub>: r = 0.88 and 0.94, respectively, both P < 0.0001) and after (e.g., VOL<sub>MRI</sub> vs. MT<sub>U/S</sub> and CSA<sub>U/S</sub>: r = 0.90 and 0.96, respectively, both P < 0.0001) immobilization. The relationship between the methods was notably stronger for MG than TA at each time-point (e.g., CSA<sub>MRI</sub> vs. MT<sub>U/S</sub>: MG, r = 0.70, P = 0.0006; TA, r = 0.37, P = 0.10). There was no relationship between the degree of DMA determined by the two methods in either muscle (e.g., TA pre- vs. post-immobilization, VOL<sub>MRI</sub>: 136 ± 6 vs. 133 ± 5, P = 0.08; CSA<sub>U/S</sub>: 6.05 ± 0.3 vs. 5.92 ± 0.4, P = 0.70; relationship between methods: r = 0.12, P = 0.75).</p><p><strong>Conclusions: </strong>Both MT<sub>U/S</sub> and CSA<sub>U/S</sub> provide comparable static measures of lower leg muscle size compared with MRI, albeit with weaker agreement in TA compared to MG. Although both MT<sub>U/S</sub> and CSA<sub>U/S</sub> can discern differences in DMA susceptibility between muscles, neither can reliably assess degree of DMA. Based on the growing recognition of heterogeneous atrophy profiles between muscles, and the topical importance of less commonly studied muscles (i.e., TA for falls prevention in older adults), future research should aim to optimize accessible methods to determine muscle losses across the body.</p>","PeriodicalId":186,"journal":{"name":"Journal of Cachexia, Sarcopenia and Muscle","volume":" ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia, Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcsm.13583","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Skeletal muscle is a highly plastic tissue crucial for many functions associated with whole-body health across the life course. Magnetic resonance imaging (MRI) is the current gold standard for measuring skeletal muscle size. However, MRI is expensive, and access to facilities is often limited. B-mode ultrasonography (U/S) has been proposed as a potential alternative to MRI for the assessment of muscle size. However, to date, no work has explored the utility of U/S to assess disuse muscle atrophy (DMA) across muscles with different atrophy susceptibility profiles, an omission which may limit the clinical application of previous work.

Methods: To address this significant knowledge gap, 10 young men (22 ±  years, 24.1 ± 2.3 kg/m2) underwent 15-day unilateral leg immobilization using a knee-brace and air boot. Cross-sectional area (CSA) and muscle thickness (MT) of the tibialis anterior (TA) and medial gastrocnemius (MG) were assessed via U/S before and after immobilization, with CSA and muscle volume assessed via MRI.

Results: With both muscles combined, there were good correlations between each U/S and MRI measure, both before (e.g., CSAMRI vs. MTU/S and CSAU/S: r = 0.88 and 0.94, respectively, both P < 0.0001) and after (e.g., VOLMRI vs. MTU/S and CSAU/S: r = 0.90 and 0.96, respectively, both P < 0.0001) immobilization. The relationship between the methods was notably stronger for MG than TA at each time-point (e.g., CSAMRI vs. MTU/S: MG, r = 0.70, P = 0.0006; TA, r = 0.37, P = 0.10). There was no relationship between the degree of DMA determined by the two methods in either muscle (e.g., TA pre- vs. post-immobilization, VOLMRI: 136 ± 6 vs. 133 ± 5, P = 0.08; CSAU/S: 6.05 ± 0.3 vs. 5.92 ± 0.4, P = 0.70; relationship between methods: r = 0.12, P = 0.75).

Conclusions: Both MTU/S and CSAU/S provide comparable static measures of lower leg muscle size compared with MRI, albeit with weaker agreement in TA compared to MG. Although both MTU/S and CSAU/S can discern differences in DMA susceptibility between muscles, neither can reliably assess degree of DMA. Based on the growing recognition of heterogeneous atrophy profiles between muscles, and the topical importance of less commonly studied muscles (i.e., TA for falls prevention in older adults), future research should aim to optimize accessible methods to determine muscle losses across the body.

探索超声波评估小腿不同肌肉废用性萎缩的实用性。
背景:骨骼肌是一种可塑性很强的组织,对整个生命过程中与全身健康相关的许多功能至关重要。磁共振成像(MRI)是目前测量骨骼肌大小的黄金标准。然而,核磁共振成像价格昂贵,而且使用设施往往有限。有人建议用 B 型超声波(U/S)替代磁共振成像评估肌肉大小。然而,迄今为止,还没有任何研究探讨过 U/S在评估不同肌肉萎缩易感性的肌肉的废用性肌肉萎缩(DMA)方面的实用性,这一疏忽可能会限制之前研究的临床应用:为了填补这一重大知识空白,10 名年轻男性(22 ± 岁,24.1 ± 2.3 kg/m2)使用膝关节支架和气靴进行了为期 15 天的单侧腿部固定。在固定前后,通过U/S评估胫骨前肌(TA)和内侧腓肠肌(MG)的横截面积(CSA)和肌肉厚度(MT),并通过核磁共振成像评估CSA和肌肉体积:对于两块肌肉,U/S和MRI测量结果之间均存在良好的相关性(例如,CSAMRI vs. MTU/S和CSAU/S:r = 0.88和0.94;P MRI vs. MTU/S和CSAU/S:r = 0.90和0.96;P MRI vs. MTU/S:MG,r = 0.70,P = 0.0006;TA,r = 0.37,P = 0.10)。两种方法测定的两块肌肉的 DMA 程度之间没有关系(例如,固定前与固定后的 TA,VOLMRI:136 ± 6 vs. 133 ± 5,P = 0.08;CSAU/S:6.05 ± 0.3 vs. 5.92 ± 0.4,P = 0.70;两种方法之间的关系:r = 0.12,P = 0.75):结论:与核磁共振成像相比,MTU/S 和 CSAU/S 可提供具有可比性的小腿肌肉大小静态测量结果,尽管 TA 与 MG 的一致性较弱。虽然 MTU/S 和 CSAU/S 都能发现肌肉间 DMA 易感性的差异,但两者都不能可靠地评估 DMA 的程度。由于人们越来越认识到肌肉之间存在不同的萎缩特征,而且较少研究的肌肉(如用于预防老年人跌倒的 TA)具有重要的临床意义,因此未来的研究应致力于优化可用于确定全身肌肉损失的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cachexia, Sarcopenia and Muscle
Journal of Cachexia, Sarcopenia and Muscle Medicine-Orthopedics and Sports Medicine
自引率
12.40%
发文量
0
期刊介绍: The Journal of Cachexia, Sarcopenia, and Muscle is a prestigious, peer-reviewed international publication committed to disseminating research and clinical insights pertaining to cachexia, sarcopenia, body composition, and the physiological and pathophysiological alterations occurring throughout the lifespan and in various illnesses across the spectrum of life sciences. This journal serves as a valuable resource for physicians, biochemists, biologists, dieticians, pharmacologists, and students alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信