Homotopy properties of the complex of frames of a unitary space

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kevin I. Piterman, Volkmar Welker
{"title":"Homotopy properties of the complex of frames of a unitary space","authors":"Kevin I. Piterman,&nbsp;Volkmar Welker","doi":"10.1112/jlms.12978","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> be a finite-dimensional vector space equipped with a nondegenerate Hermitian form over a field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> be the graph with vertex set the one-dimensional nondegenerate subspaces of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and adjacency relation given by orthogonality. We give a complete description of when <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> is connected in terms of the dimension of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and the size of the ground field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>. Furthermore, we prove that if <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n <mo>&gt;</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\dim (V) &amp;gt; 4$</annotation>\n </semantics></math>, then the clique complex <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> is simply connected. For finite fields <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>, we also compute the eigenvalues of the adjacency matrix of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math>. Then, by Garland's method, we conclude that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>H</mi>\n <mo>∼</mo>\n </mover>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <mo>;</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\tilde{H}_m({\\mathcal {F}}(V);{\\mathbb {k}}) = 0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>⩽</mo>\n <mi>m</mi>\n <mo>⩽</mo>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$0\\leqslant m\\leqslant \\dim (V)-3$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\mathbb {k}}$</annotation>\n </semantics></math> is a field of characteristic 0, provided that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>⩽</mo>\n <mrow>\n <mo>|</mo>\n <mi>K</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\dim (V)^2 \\leqslant |{\\mathbb {K}}|$</annotation>\n </semantics></math>. Under these assumptions, we deduce that the barycentric subdivision of <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> deformation retracts to the order complex of the certain rank selection of <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> that is Cohen–Macaulay over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\mathbb {k}}$</annotation>\n </semantics></math>. Finally, we apply our results to the Quillen poset of elementary abelian <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-subgroups of a finite group and to the study of geometric properties of the poset of nondegenerate subspaces of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and the poset of orthogonal decompositions of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12978","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let V $V$ be a finite-dimensional vector space equipped with a nondegenerate Hermitian form over a field K ${\mathbb {K}}$ . Let G ( V ) ${\mathcal {G}}(V)$ be the graph with vertex set the one-dimensional nondegenerate subspaces of V $V$ and adjacency relation given by orthogonality. We give a complete description of when G ( V ) ${\mathcal {G}}(V)$ is connected in terms of the dimension of V $V$ and the size of the ground field K ${\mathbb {K}}$ . Furthermore, we prove that if dim ( V ) > 4 $\dim (V) &gt; 4$ , then the clique complex F ( V ) ${\mathcal {F}}(V)$ of G ( V ) ${\mathcal {G}}(V)$ is simply connected. For finite fields K ${\mathbb {K}}$ , we also compute the eigenvalues of the adjacency matrix of G ( V ) ${\mathcal {G}}(V)$ . Then, by Garland's method, we conclude that H m ( F ( V ) ; k ) = 0 $\tilde{H}_m({\mathcal {F}}(V);{\mathbb {k}}) = 0$ for all 0 m dim ( V ) 3 $0\leqslant m\leqslant \dim (V)-3$ , where k ${\mathbb {k}}$ is a field of characteristic 0, provided that dim ( V ) 2 | K | $\dim (V)^2 \leqslant |{\mathbb {K}}|$ . Under these assumptions, we deduce that the barycentric subdivision of F ( V ) ${\mathcal {F}}(V)$ deformation retracts to the order complex of the certain rank selection of F ( V ) ${\mathcal {F}}(V)$ that is Cohen–Macaulay over k ${\mathbb {k}}$ . Finally, we apply our results to the Quillen poset of elementary abelian p $p$ -subgroups of a finite group and to the study of geometric properties of the poset of nondegenerate subspaces of V $V$ and the poset of orthogonal decompositions of V $V$ .

单元空间框架复数的同调性质
设 V $V$ 是一个有限维向量空间,其上有一个域 K ${mathbb {K}}$ 的非enerate 赫米提形式。让 G ( V ) ${mathcal {G}}(V)$ 是顶点集为 V $V$ 的一维非enerate 子空间且邻接关系由正交性给出的图。我们用 V $V$ 的维数和基场 K ${mathbb {K}}$ 的大小给出了 G ( V ) ${mathcal {G}}(V)$ 连接时的完整描述。此外,我们证明如果 dim ( V ) > 4 $\dim (V) &gt; 4$ ,那么 G ( V ) ${\mathcal {F}}(V)$ 的簇复数 F ( V ) ${\mathcal {G}}(V)$ 是简单相连的。对于有限域 K ${{mathbb {K}}$ ,我们也计算 G ( V ) ${\mathcal {G}}(V)$ 的邻接矩阵的特征值。然后,根据加兰方法,我们得出 H ∼ m ( F ( V ) ; k ) = 0 $\tilde{H}_m({\mathcal {F}}(V);{mathbb {k}}) = 0$ for all 0 ⩽ m ⩽ dim ( V ) - 3 $0\leqslant m\leqslant \dim (V)-3$, where k $\{mathbb {k}}$ is a field of characteristic 0、条件是 dim ( V ) 2 ⩽ | K | $\dim (V)^2 \leqslant |{\mathbb {K}}|$ 。在这些假设下,我们推导出 F ( V ) ${mathcal {F}}(V)$ 的重心细分形变回缩到 F ( V ) ${mathcal {F}}(V)$ 的一定秩选择的阶复数,该阶复数是在 k ${mathbb {k}} 上的 Cohen-Macaulay 。最后,我们将结果应用于有限群的基本无性 p $p$ 子群的奎伦正集,以及 V $V$ 的非enerate 子空间正集和 V $V$ 的正交分解正集的几何性质研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信