{"title":"Using Machine Learning to Predict Cloud Turbulent Entrainment-Mixing Processes","authors":"Sinan Gao, Chunsong Lu, Jiashan Zhu, Yabin Li, Yangang Liu, Binqi Zhao, Sheng Hu, Xiantong Liu, Jingjing Lv","doi":"10.1029/2024MS004225","DOIUrl":null,"url":null,"abstract":"<p>Different turbulent entrainment-mixing mechanisms between clouds and environment are essential to cloud-related processes; however, accurate representation of entrainment-mixing in weather/climate models still poses a challenge. This study exploits the use of machine learning (ML) to address this challenge. Four ML (Light Gradient Boosting Machine [LGB], eXtreme Gradient Boosting, Random Forest, and Support Vector Regression) are examined and compared. It is found that LGB performs best, and thus is selected to understand the impact of entrainment-mixing on microphysics using simulation data from Explicit Mixing Parcel Model. Compared with traditional parameterizations, the trained LGB provides more accurate microphysical properties (number concentration and cloud droplet spectral dispersion). The partial dependences of predicted microphysics on features exhibit a strong alignment with physical mechanisms and expectations, as determined by the interpreting method, thus overcoming the limitations of the “black box” scheme. The underlying mechanisms are that the smaller number concentration and larger spectral dispersion correspond to more inhomogeneous entrainment-mixing. Specifically, number concentration after entrainment-mixing is positively correlated with adiabatic number concentration and liquid water content affected by entrainment-mixing, and inversely correlated with adiabatic volume mean radius. Spectral dispersion after entrainment-mixing is negatively correlated with liquid water content affected by entrainment-mixing, turbulent dissipation rate and relative humidity of entrained air. Sensitivity analysis further suggests that number concentration is mainly determined by cloud microphysical properties whereas spectral dispersion is influenced by both cloud microphysical properties and environmental variables. The results indicate that the LGB scheme has the potential to enhance the representation of entrainment-mixing in weather/climate models.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004225","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Different turbulent entrainment-mixing mechanisms between clouds and environment are essential to cloud-related processes; however, accurate representation of entrainment-mixing in weather/climate models still poses a challenge. This study exploits the use of machine learning (ML) to address this challenge. Four ML (Light Gradient Boosting Machine [LGB], eXtreme Gradient Boosting, Random Forest, and Support Vector Regression) are examined and compared. It is found that LGB performs best, and thus is selected to understand the impact of entrainment-mixing on microphysics using simulation data from Explicit Mixing Parcel Model. Compared with traditional parameterizations, the trained LGB provides more accurate microphysical properties (number concentration and cloud droplet spectral dispersion). The partial dependences of predicted microphysics on features exhibit a strong alignment with physical mechanisms and expectations, as determined by the interpreting method, thus overcoming the limitations of the “black box” scheme. The underlying mechanisms are that the smaller number concentration and larger spectral dispersion correspond to more inhomogeneous entrainment-mixing. Specifically, number concentration after entrainment-mixing is positively correlated with adiabatic number concentration and liquid water content affected by entrainment-mixing, and inversely correlated with adiabatic volume mean radius. Spectral dispersion after entrainment-mixing is negatively correlated with liquid water content affected by entrainment-mixing, turbulent dissipation rate and relative humidity of entrained air. Sensitivity analysis further suggests that number concentration is mainly determined by cloud microphysical properties whereas spectral dispersion is influenced by both cloud microphysical properties and environmental variables. The results indicate that the LGB scheme has the potential to enhance the representation of entrainment-mixing in weather/climate models.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.