Investigating the charge transfer mechanism of ZnSe QD/COF S-scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Yanyan Zhao , Chunyan Yang , Shumin Zhang , Guotai Sun , Bicheng Zhu , Linxi Wang , Jianjun Zhang
{"title":"Investigating the charge transfer mechanism of ZnSe QD/COF S-scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy","authors":"Yanyan Zhao ,&nbsp;Chunyan Yang ,&nbsp;Shumin Zhang ,&nbsp;Guotai Sun ,&nbsp;Bicheng Zhu ,&nbsp;Linxi Wang ,&nbsp;Jianjun Zhang","doi":"10.1016/S1872-2067(24)60069-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) has gained widespread attention as a versatile oxidant and a mild disinfectant. Here, an electrostatic self-assembly method is applied to couple ZnSe quantum dots (QDs) with a flower-like covalent organic framework (COF) to form a step-scheme (S-scheme) photocatalyst for H<sub>2</sub>O<sub>2</sub> production. The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF. The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and <em>in-situ</em> X-ray photoelectron and femtosecond transient absorption spectroscopies. Photoluminescence, time-resolved photoluminescence, photocurrent response, electrochemical impedance spectroscopy, and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability, resulting in enhanced photocatalytic performance. Remarkably, a 10%-ZnSe QD/COF has excellent photocatalytic H<sub>2</sub>O<sub>2</sub>-production activity, and the optimal S-scheme composite with ethanol as the hole scavenger yields a H<sub>2</sub>O<sub>2</sub>-production rate of 1895 mol g<sup>–1</sup> h<sup>–1</sup>. This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H<sub>2</sub>O<sub>2</sub> production.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"63 ","pages":"Pages 258-269"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600690","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H2O2) has gained widespread attention as a versatile oxidant and a mild disinfectant. Here, an electrostatic self-assembly method is applied to couple ZnSe quantum dots (QDs) with a flower-like covalent organic framework (COF) to form a step-scheme (S-scheme) photocatalyst for H2O2 production. The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF. The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies. Photoluminescence, time-resolved photoluminescence, photocurrent response, electrochemical impedance spectroscopy, and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability, resulting in enhanced photocatalytic performance. Remarkably, a 10%-ZnSe QD/COF has excellent photocatalytic H2O2-production activity, and the optimal S-scheme composite with ethanol as the hole scavenger yields a H2O2-production rate of 1895 mol g–1 h–1. This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H2O2 production.

利用飞秒瞬态吸收光谱研究 ZnSe QD/COF S 型光催化剂产生 H2O2 的电荷转移机制
过氧化氢(H2O2)作为一种多功能氧化剂和温和的消毒剂已受到广泛关注。本文采用静电自组装方法将硒化锌量子点(QDs)与花朵状共价有机框架(COF)结合起来,形成一种用于产生 H2O2 的阶梯型(S-scheme)光催化剂。由于 ZnSe QDs 和 COF 之间的协同效应,制备的 S 型光催化剂具有宽广的光吸收范围,其边缘在 810 纳米处。通过费米级计算、原位 X 射线光电子和飞秒瞬态吸收光谱分析,验证了 S-scheme 电荷载流子转移机制。光致发光、时间分辨光致发光、光电流响应、电化学阻抗谱和电子顺磁共振结果表明,S 型异质结不仅能促进电荷载流子分离,还能增强氧化还原能力,从而提高光催化性能。值得注意的是,10%-ZnSe QD/COF 具有优异的光催化产生 H2O2 的活性,而以乙醇作为空穴清除剂的最佳 S-scheme复合材料可产生 1895 mol g-1 h-1 的 H2O2 生成率。本研究介绍了一种用于生产 H2O2 的高性能有机/无机 S-表层光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信