Guozhong Yao, Zixian Yang, Shaojun Han, Zhengjiang Wang
{"title":"Full-speed domain position sensorless control strategy for PMSM based on a novel phase-locked loop","authors":"Guozhong Yao, Zixian Yang, Shaojun Han, Zhengjiang Wang","doi":"10.1016/j.conengprac.2024.106058","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a full-speed-domain position-sensor-less control strategy for precise control under forward and reverse rotation conditions to address the weak convex polarity of surface-mounted permanent magnet synchronous motor (SPMSM). The strategy comprises several key stages: pre-positioning of the rotor, constant current variable frequency (I/F) start-up, construct the Luenberger State Observer, and utilization of an improved phase-locked loop (PLL) for position estimation. In the pre-positioning stage, a constant amplitude current is applied to drag the rotor to a predetermined position. Subsequently, the I/F start-up stage accelerates the motor to a predetermined speed before transitioning to the Luenberger observer for closed-loop speed control, which is based on an extended back electromotive force (back-EMF) a two-phase rotating coordinate system. The improved PLL for position and speed estimation features three components: a phase discriminator (PD), a voltage-controlled oscillator (VCO), and loop filter (LF). Experimental results demonstrate the efficacy of the proposed strategy, showing quick start-up response, speed estimation error below 2 RPM, rotor position estimation error under 0.6 degrees post-loop closure, stable tracking during rapid speed changes, and consistent accuracy and stability even under reverse rotation conditions, thereby meeting the control strategy’s objectives.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106058"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S096706612400217X/pdfft?md5=ea20665e2ea29cf62ebc6e363f127def&pid=1-s2.0-S096706612400217X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612400217X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a full-speed-domain position-sensor-less control strategy for precise control under forward and reverse rotation conditions to address the weak convex polarity of surface-mounted permanent magnet synchronous motor (SPMSM). The strategy comprises several key stages: pre-positioning of the rotor, constant current variable frequency (I/F) start-up, construct the Luenberger State Observer, and utilization of an improved phase-locked loop (PLL) for position estimation. In the pre-positioning stage, a constant amplitude current is applied to drag the rotor to a predetermined position. Subsequently, the I/F start-up stage accelerates the motor to a predetermined speed before transitioning to the Luenberger observer for closed-loop speed control, which is based on an extended back electromotive force (back-EMF) a two-phase rotating coordinate system. The improved PLL for position and speed estimation features three components: a phase discriminator (PD), a voltage-controlled oscillator (VCO), and loop filter (LF). Experimental results demonstrate the efficacy of the proposed strategy, showing quick start-up response, speed estimation error below 2 RPM, rotor position estimation error under 0.6 degrees post-loop closure, stable tracking during rapid speed changes, and consistent accuracy and stability even under reverse rotation conditions, thereby meeting the control strategy’s objectives.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.