Xin Liu , Shuhuan Wen , Yaohua Hu , Fei Han , Hong Zhang , Hamid Reza Karimi
{"title":"An active SLAM with multi-sensor fusion for snake robots based on deep reinforcement learning","authors":"Xin Liu , Shuhuan Wen , Yaohua Hu , Fei Han , Hong Zhang , Hamid Reza Karimi","doi":"10.1016/j.mechatronics.2024.103248","DOIUrl":null,"url":null,"abstract":"<div><p>Snake-like robots can imitate the movement patterns of animals in nature and enter the space that traditional robots cannot enter, which adapt to environments that humans cannot reach, and expand the field of human exploration. However, it is often challenging to realize autonomous navigation and simultaneously avoid obstacles under an unknown environment, that is, active SLAM (Simultaneous Localization and Mapping). This paper proposes an autonomous obstacle avoidance method combined with SLAM based on deep reinforcement learning for a wheeled snake robot by using a multi-sensor. Firstly, we design a modular wheeled snake robot structure with lightweight materials based on orthogonal joints and build a three-dimensional model of a snake robot in Gazebo. Secondly, the SLAM based on two-dimensional LiDAR and IMU is used to realize autonomous navigation under an unknown environment and detect obstacles. At the same time, a Deep Q-Learning-based path planning method of the snake robot is proposed to realize obstacles avoidance during navigation. Finally, simulation studies and experiments show that the designed snake-like robot can realize effective path planning and environmental mapping in environments with obstacles. The proposed active SLAM algorithm improves the success rate of snake-like robot path planning, has better obstacle avoidance ability for obstacles, and reduces the number of collisions compared with the traditional A* and the sampling-based RRT* algorithms.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"103 ","pages":"Article 103248"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824001132","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Snake-like robots can imitate the movement patterns of animals in nature and enter the space that traditional robots cannot enter, which adapt to environments that humans cannot reach, and expand the field of human exploration. However, it is often challenging to realize autonomous navigation and simultaneously avoid obstacles under an unknown environment, that is, active SLAM (Simultaneous Localization and Mapping). This paper proposes an autonomous obstacle avoidance method combined with SLAM based on deep reinforcement learning for a wheeled snake robot by using a multi-sensor. Firstly, we design a modular wheeled snake robot structure with lightweight materials based on orthogonal joints and build a three-dimensional model of a snake robot in Gazebo. Secondly, the SLAM based on two-dimensional LiDAR and IMU is used to realize autonomous navigation under an unknown environment and detect obstacles. At the same time, a Deep Q-Learning-based path planning method of the snake robot is proposed to realize obstacles avoidance during navigation. Finally, simulation studies and experiments show that the designed snake-like robot can realize effective path planning and environmental mapping in environments with obstacles. The proposed active SLAM algorithm improves the success rate of snake-like robot path planning, has better obstacle avoidance ability for obstacles, and reduces the number of collisions compared with the traditional A* and the sampling-based RRT* algorithms.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.