A fast and high-performance global router with enhanced congestion control

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xiqiong Bai , Yilu Chen , Zhifeng Lin , Min Wei , Zhijie Cai , Ziran Zhu , Jianli Chen
{"title":"A fast and high-performance global router with enhanced congestion control","authors":"Xiqiong Bai ,&nbsp;Yilu Chen ,&nbsp;Zhifeng Lin ,&nbsp;Min Wei ,&nbsp;Zhijie Cai ,&nbsp;Ziran Zhu ,&nbsp;Jianli Chen","doi":"10.1016/j.vlsi.2024.102263","DOIUrl":null,"url":null,"abstract":"<div><p>In global routing, congestion and running time are the key factors that affect the quality of the solution. With the rapid growth of integrated chip scale, striking a balance between running time and congestion has become a bottleneck in improving design quality. In this paper, we propose a highly efficient and effective global router to address this challenge. We first propose an efficient R-tree-based compatible routing region partitioning algorithm for collecting routable regions, which offers robust support for ideal parallel routing scheduling. Then, taking into account the effect of the barrel effect on congestion evaluation and the detrimental impact of loops, a congestion-driven initial parallel routing scheme is proposed to enhance routability in the triaxial pattern routing structure. After that, we develop an accurate congestion estimation model and an optimized path-searching scheme, which are instrumental in effectively managing smaller congestion gradient variations and guiding efficient congestion reduction. We evaluate the performance of our algorithm on the ISPD 2018 and ISPD 2019 contest benchmark suites and compare it with the state-of-the-art work. Experimental results show that our proposed algorithm significantly reduces 71% overflows, improving 65% running time, and the total wirelength is even smaller.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001275","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In global routing, congestion and running time are the key factors that affect the quality of the solution. With the rapid growth of integrated chip scale, striking a balance between running time and congestion has become a bottleneck in improving design quality. In this paper, we propose a highly efficient and effective global router to address this challenge. We first propose an efficient R-tree-based compatible routing region partitioning algorithm for collecting routable regions, which offers robust support for ideal parallel routing scheduling. Then, taking into account the effect of the barrel effect on congestion evaluation and the detrimental impact of loops, a congestion-driven initial parallel routing scheme is proposed to enhance routability in the triaxial pattern routing structure. After that, we develop an accurate congestion estimation model and an optimized path-searching scheme, which are instrumental in effectively managing smaller congestion gradient variations and guiding efficient congestion reduction. We evaluate the performance of our algorithm on the ISPD 2018 and ISPD 2019 contest benchmark suites and compare it with the state-of-the-art work. Experimental results show that our proposed algorithm significantly reduces 71% overflows, improving 65% running time, and the total wirelength is even smaller.

快速、高性能的全局路由器,具有增强的拥塞控制功能
在全局路由过程中,拥塞和运行时间是影响解决方案质量的关键因素。随着集成芯片规模的快速增长,如何在运行时间和拥塞之间取得平衡已成为提高设计质量的瓶颈。本文提出了一种高效的全局路由器来应对这一挑战。我们首先提出了一种高效的基于 R 树的兼容路由区域划分算法,用于收集可路由区域,为理想的并行路由调度提供强大的支持。然后,考虑到木桶效应对拥塞评估的影响以及环路的不利影响,我们提出了一种拥塞驱动的初始并行路由方案,以增强三轴模式路由结构的可路由性。之后,我们开发了精确的拥塞估计模型和优化的路径搜索方案,这有助于有效管理较小的拥塞梯度变化,并指导有效减少拥塞。我们在 ISPD 2018 和 ISPD 2019 竞赛基准套件上评估了我们算法的性能,并将其与最先进的工作进行了比较。实验结果表明,我们提出的算法显著减少了 71% 的溢出,改善了 65% 的运行时间,总线长甚至更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Integration-The Vlsi Journal
Integration-The Vlsi Journal 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.30%
发文量
107
审稿时长
6 months
期刊介绍: Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics: Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信