{"title":"Albedo analysis of dust devil-induced slope streaks and tracks on Mars","authors":"","doi":"10.1016/j.icarus.2024.116270","DOIUrl":null,"url":null,"abstract":"<div><p>Despite frequent observations of slope streaks and dust devil tracks on the same slopes in various regions on Mars, only a few instances in Arabia Terra have documented slope streaks directly triggered by dust devils. Here we present new observations of dust devil-induced slope streaks in Elysium Planitia and Amazonis Planitia. These observations represent a rare opportunity to study the erosional effects of both dust devils and slope streaks on the martian surface. Since dust devil tracks and the triggered streaks are formed basically simultaneously and are therefore subject to similar alteration processes, e.g., settling dust from the atmosphere, the relative albedo of these features can be determined using high-resolution orbital images. Our relative albedo analyses of twelve dust devil-induced slope streaks revealed that slope streaks appear substantially darker than the respective dust devil tracks. These observations might indicate a stronger erosion of fine-grained material by slope streaks compared to dust devils.</p></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019103524003300/pdfft?md5=5c507fa8df7b22ab7621525c0c43cbc8&pid=1-s2.0-S0019103524003300-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003300","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite frequent observations of slope streaks and dust devil tracks on the same slopes in various regions on Mars, only a few instances in Arabia Terra have documented slope streaks directly triggered by dust devils. Here we present new observations of dust devil-induced slope streaks in Elysium Planitia and Amazonis Planitia. These observations represent a rare opportunity to study the erosional effects of both dust devils and slope streaks on the martian surface. Since dust devil tracks and the triggered streaks are formed basically simultaneously and are therefore subject to similar alteration processes, e.g., settling dust from the atmosphere, the relative albedo of these features can be determined using high-resolution orbital images. Our relative albedo analyses of twelve dust devil-induced slope streaks revealed that slope streaks appear substantially darker than the respective dust devil tracks. These observations might indicate a stronger erosion of fine-grained material by slope streaks compared to dust devils.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.