{"title":"A multi-objective Roadside Units deployment strategy based on reliable coverage analysis in Internet of Vehicles","authors":"","doi":"10.1016/j.adhoc.2024.103630","DOIUrl":null,"url":null,"abstract":"<div><p>The deployment of Roadside Units (RSUs) in the Cellular-Vehicle to Everything enabled Internet of Vehicles is crucial for the transition from individual intelligence of vehicles to collective intelligence of vehicle-road collaboration. In this paper, we focus on improving the adaptability of RSU deployment to real scenarios, and optimizing deployment costs and vehicle-oriented service performance. The RSU deployment problem is modeled as a Multi-objective Optimization Problem (MOP), with a cost model integrating the purchase and installation costs, and a service-oriented Quality of Service (QoS) model adopting the total time the RSUs cover the vehicles as the evaluation metric. Specifically, we propose an RSU reliable coverage analysis method based on Packet Delivery Ratio model to estimate the coverage distances in different scenarios, which will be used in QoS calculation. Then, an evolutionary RSU deployment algorithm is designed to solve the MOP. The performance of the proposed method is simulated and discussed in real road network and dynamic scenarios. The results prove that our method outperforms the baseline method in terms of significant cost reduction and total coverage time improvement.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002415","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of Roadside Units (RSUs) in the Cellular-Vehicle to Everything enabled Internet of Vehicles is crucial for the transition from individual intelligence of vehicles to collective intelligence of vehicle-road collaboration. In this paper, we focus on improving the adaptability of RSU deployment to real scenarios, and optimizing deployment costs and vehicle-oriented service performance. The RSU deployment problem is modeled as a Multi-objective Optimization Problem (MOP), with a cost model integrating the purchase and installation costs, and a service-oriented Quality of Service (QoS) model adopting the total time the RSUs cover the vehicles as the evaluation metric. Specifically, we propose an RSU reliable coverage analysis method based on Packet Delivery Ratio model to estimate the coverage distances in different scenarios, which will be used in QoS calculation. Then, an evolutionary RSU deployment algorithm is designed to solve the MOP. The performance of the proposed method is simulated and discussed in real road network and dynamic scenarios. The results prove that our method outperforms the baseline method in terms of significant cost reduction and total coverage time improvement.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.