Vitor Arcoverde Cerveira Sterner , Kristóf Jobbágy , Brigitta Tóth , Szabolcs Rudnóy , Gyula Sipos , Ferenc Fodor
{"title":"Increasing salinity sequentially induces salt tolerance responses in Szarvasi-1 energy grass","authors":"Vitor Arcoverde Cerveira Sterner , Kristóf Jobbágy , Brigitta Tóth , Szabolcs Rudnóy , Gyula Sipos , Ferenc Fodor","doi":"10.1016/j.stress.2024.100572","DOIUrl":null,"url":null,"abstract":"<div><p>Soil salinity causes severe physiological disorders, decline in biomass, and crop production worldwide becoming more critical with global climate change. Consequently, salt-tolerant varieties received major focus in all sectors of agriculture. Biomass plants such as Szarvasi-1 energy grass (<em>Elymus elongatus</em> subsp. <em>ponticus</em> cv. Szarvasi-1) may play an important role in energy production if they are tolerant to environmental stresses. In this study, Szarvasi-1 energy grass has been investigated to reveal its tolerance to 50–200 mM NaCl in hydroponics. Significant decline in stomatal conductance appeared at 100 mM NaCl treatment but fresh and dry weight and the maximal quantum efficiency of PSII decreased only at 200 mM NaCl. Relative water content and total chlorophyll concentration did not change compared to the control. Leaf water potential was maintained at the control level for one week NaCl exposure, decrease became significant only after two weeks. Malondialdehyde concentration did not refer to oxidative stress. In the element composition of the plants, remarkable increase was found only for Mo whereas Ca, K, S, P, Mn decreased compared to the control. K to Na ratio remained higher than one in the shoot even at 200 mM NaCl. Salt treatment caused temporal and concentration-dependent changes in the expression of genes in the phenylpropanoid pathway, Na transport, photosynthesis, and cellular protection and repair. Szarvasi-1 was found to be fairly tolerant to NaCl which induced a sequential response switching on vacuolar compartmentalization at 50 mM, Na efflux at 100 mM, and cellular protection and repair at 200 mM.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100572"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002252/pdfft?md5=5c4305b140e57e1217a90f0739995e1f&pid=1-s2.0-S2667064X24002252-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil salinity causes severe physiological disorders, decline in biomass, and crop production worldwide becoming more critical with global climate change. Consequently, salt-tolerant varieties received major focus in all sectors of agriculture. Biomass plants such as Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) may play an important role in energy production if they are tolerant to environmental stresses. In this study, Szarvasi-1 energy grass has been investigated to reveal its tolerance to 50–200 mM NaCl in hydroponics. Significant decline in stomatal conductance appeared at 100 mM NaCl treatment but fresh and dry weight and the maximal quantum efficiency of PSII decreased only at 200 mM NaCl. Relative water content and total chlorophyll concentration did not change compared to the control. Leaf water potential was maintained at the control level for one week NaCl exposure, decrease became significant only after two weeks. Malondialdehyde concentration did not refer to oxidative stress. In the element composition of the plants, remarkable increase was found only for Mo whereas Ca, K, S, P, Mn decreased compared to the control. K to Na ratio remained higher than one in the shoot even at 200 mM NaCl. Salt treatment caused temporal and concentration-dependent changes in the expression of genes in the phenylpropanoid pathway, Na transport, photosynthesis, and cellular protection and repair. Szarvasi-1 was found to be fairly tolerant to NaCl which induced a sequential response switching on vacuolar compartmentalization at 50 mM, Na efflux at 100 mM, and cellular protection and repair at 200 mM.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.