On k-shifted antimagic spider forests

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Fei-Huang Chang , Wei-Tian Li , Daphne Der-Fen Liu , Zhishi Pan
{"title":"On k-shifted antimagic spider forests","authors":"Fei-Huang Chang ,&nbsp;Wei-Tian Li ,&nbsp;Daphne Der-Fen Liu ,&nbsp;Zhishi Pan","doi":"10.1016/j.dam.2024.07.036","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be a simple graph with <span><math><mi>m</mi></math></span> edges. For a given integer <span><math><mi>k</mi></math></span>, a <span><math><mi>k</mi></math></span>-shifted antimagic labeling is a bijection <span><math><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>+</mo><mi>m</mi><mo>}</mo></mrow></mrow></math></span> such that all vertices have different vertex-sums, where the vertex-sum of a vertex <span><math><mi>v</mi></math></span> is the sum of the labels assigned to the edges incident to <span><math><mi>v</mi></math></span>. A graph <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span><em>-shifted antimagic</em> if it admits a <span><math><mi>k</mi></math></span>-shifted antimagic labeling. For the special case when <span><math><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></math></span>, a 0-shifted antimagic labeling is known as <em>antimagic labeling</em>; and <span><math><mi>G</mi></math></span> is <em>antimagic</em> if it admits an antimagic labeling. A spider is a tree with exactly one vertex of degree greater than two. A spider forest is a graph where each component is a spider. In this article, we prove that certain spider forests are <span><math><mi>k</mi></math></span>-shifted antimagic for all <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>0</mn></mrow></math></span>. In addition, we show that for a spider forest <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> edges, there exists a positive integer <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mi>m</mi></mrow></math></span> such that <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span>-shifted antimagic for all <span><math><mrow><mi>k</mi><mo>⩾</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>⩽</mo><mo>−</mo><mrow><mo>(</mo><mi>m</mi><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"358 ","pages":"Pages 468-476"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24003391/pdfft?md5=2002cef3181394859c5f2db48d9e05e5&pid=1-s2.0-S0166218X24003391-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003391","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G(V,E) be a simple graph with m edges. For a given integer k, a k-shifted antimagic labeling is a bijection f:E(G){k+1,k+2,,k+m} such that all vertices have different vertex-sums, where the vertex-sum of a vertex v is the sum of the labels assigned to the edges incident to v. A graph G is k-shifted antimagic if it admits a k-shifted antimagic labeling. For the special case when k=0, a 0-shifted antimagic labeling is known as antimagic labeling; and G is antimagic if it admits an antimagic labeling. A spider is a tree with exactly one vertex of degree greater than two. A spider forest is a graph where each component is a spider. In this article, we prove that certain spider forests are k-shifted antimagic for all k0. In addition, we show that for a spider forest G with m edges, there exists a positive integer k0<m such that G is k-shifted antimagic for all kk0 and k(m+k0+1).

关于 k 移位的反魔法蜘蛛森林
假设 G(V,E) 是一个有 m 条边的简单图。对于给定的整数 k,k 移位反魔法标签是一个双射 f:E(G)→{k+1,k+2,...,k+m},使得所有顶点具有不同的顶点和,其中顶点 v 的顶点和是分配给 v 所带边的标签之和。在 k=0 的特殊情况下,0 移位反魔法标签被称为反魔法标签;如果图 G 允许反魔法标签,那么它就是反魔法图。蜘蛛图是指一个顶点的阶数大于 2 的树。蜘蛛森林是每个组成部分都是蜘蛛的图。在本文中,我们证明了某些蜘蛛森林在所有 k⩾0 条件下都是 k 移位反魔法的。此外,我们还证明,对于有 m 条边的蜘蛛森林 G,存在一个正整数 k0<m,使得 G 在所有 k⩾k0 和 k⩽-(m+k0+1) 条件下都是 k 移位反魔术的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信