A macro BDM H-div mixed finite element on polygonal and polyhedral meshes

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xuejun Xu , Xiu Ye , Shangyou Zhang
{"title":"A macro BDM H-div mixed finite element on polygonal and polyhedral meshes","authors":"Xuejun Xu ,&nbsp;Xiu Ye ,&nbsp;Shangyou Zhang","doi":"10.1016/j.apnum.2024.08.013","DOIUrl":null,"url":null,"abstract":"<div><p>A BDM type of <span><math><mi>H</mi><mo>(</mo><mi>div</mi><mo>)</mo></math></span> mixed finite element is constructed on polygonal and polyhedral meshes. The flux space is the <span><math><mi>H</mi><mo>(</mo><mi>div</mi><mo>)</mo></math></span> subspace of the <em>n</em>-product <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> space such that the divergence is a one-piece <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> polynomial on the big polygon or polyhedron <em>T</em>. Here we assume the 2D polygon can be subdivided into triangles by connecting only one vertex with some vertices of the polygon. For the 3D polyhedron we assume it can be subdivided into tetrahedra, with no added vertex on subdividing its face-polygons, and with either no internal edge or one internal edge. Such mixed finite elements can be more economic on quadrilateral and hexahedral meshes, compared with the standard BDM mixed element on triangular and tetrahedral meshes. Numerical tests and comparisons with the triangular and tetrahedral BDM finite elements are provided.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A BDM type of H(div) mixed finite element is constructed on polygonal and polyhedral meshes. The flux space is the H(div) subspace of the n-product ΠiPk(Ti)d space such that the divergence is a one-piece Pk1 polynomial on the big polygon or polyhedron T. Here we assume the 2D polygon can be subdivided into triangles by connecting only one vertex with some vertices of the polygon. For the 3D polyhedron we assume it can be subdivided into tetrahedra, with no added vertex on subdividing its face-polygons, and with either no internal edge or one internal edge. Such mixed finite elements can be more economic on quadrilateral and hexahedral meshes, compared with the standard BDM mixed element on triangular and tetrahedral meshes. Numerical tests and comparisons with the triangular and tetrahedral BDM finite elements are provided.

多边形和多面体网格上的宏 BDM H-div 混合有限元
在多边形和多面体网格上构建了 BDM 类型的 H(div) 混合有限元。通量空间是 n 积 ΠiPk(Ti)d 空间的 H(div) 子空间,其发散是大多边形或多面体 T 上的一次 Pk-1 多项式。对于三维多面体,我们假设它可以细分为四面体,在细分其面多面体时不增加顶点,并且没有内边或只有一条内边。与三角形和四面体网格上的标准 BDM 混合元素相比,这种混合有限元在四边形和六面体网格上更经济。本文提供了数值测试以及与三角形和四面体 BDM 有限元的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信