{"title":"Caveolin-1 protects retinal ganglion cells in glaucoma by reducing TLR4 and activating the Akt/PTEN signaling pathway","authors":"","doi":"10.1016/j.prp.2024.155552","DOIUrl":null,"url":null,"abstract":"<div><p>Glaucoma is a degenerative disease characterized by retinal ganglion cell (RGC) death and visual impairment caused by elevated intraocular pressure (IOP). Elevated IOP can activate microglia, which participate in ganglion cell injury. Based on the study of caveolin-1 (Cav-1) in glaucoma, we aimed to explore the effect and mechanism of Cav-1 on RGC apoptosis in mice with acute ocular hypertension (AOH). AOH mice were established, and Cav-1 was intravitreally injected. Retinal microglia and RGCs were isolated from neonatal mice. TUNEL staining, hematoxylin-eosin staining, immunohistochemistry, flow cytometry, PCR and western blotting were used to observe the effect of Cav-1 on RGCs and mouse retinas. The thickness of the whole retina and the inner retinal sublayer decreased significantly, retinal cell apoptosis increased after AOH injury, and Cav-1 treatment reversed the effect of AOH injury. In addition, Cav-1 treatment promoted the conversion of proinflammatory M1 microglia to anti-inflammatory M2 microglia. Microglia and RGCs were isolated from neonatal mice. Cav-1 protects RGCs from OGD/R-induced injury by changing the polarization status of retinal microglia <em>in vitro</em>. Further studies revealed that Cav-1 activated the Akt/PTEN signaling pathway and inhibited TLR4. Our study provides evidence that Cav-1 may be a promising therapeutic target for glaucoma.</p></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824004631","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glaucoma is a degenerative disease characterized by retinal ganglion cell (RGC) death and visual impairment caused by elevated intraocular pressure (IOP). Elevated IOP can activate microglia, which participate in ganglion cell injury. Based on the study of caveolin-1 (Cav-1) in glaucoma, we aimed to explore the effect and mechanism of Cav-1 on RGC apoptosis in mice with acute ocular hypertension (AOH). AOH mice were established, and Cav-1 was intravitreally injected. Retinal microglia and RGCs were isolated from neonatal mice. TUNEL staining, hematoxylin-eosin staining, immunohistochemistry, flow cytometry, PCR and western blotting were used to observe the effect of Cav-1 on RGCs and mouse retinas. The thickness of the whole retina and the inner retinal sublayer decreased significantly, retinal cell apoptosis increased after AOH injury, and Cav-1 treatment reversed the effect of AOH injury. In addition, Cav-1 treatment promoted the conversion of proinflammatory M1 microglia to anti-inflammatory M2 microglia. Microglia and RGCs were isolated from neonatal mice. Cav-1 protects RGCs from OGD/R-induced injury by changing the polarization status of retinal microglia in vitro. Further studies revealed that Cav-1 activated the Akt/PTEN signaling pathway and inhibited TLR4. Our study provides evidence that Cav-1 may be a promising therapeutic target for glaucoma.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.