Jonathan Wavomba Mtogo , Gladys Wanyaga Mugo , Peter Mizsey
{"title":"Enhancing exergy efficiency and environmental sustainability in pressure swing azeotropic distillation","authors":"Jonathan Wavomba Mtogo , Gladys Wanyaga Mugo , Peter Mizsey","doi":"10.1016/j.cles.2024.100134","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the economic, energetic, exergy efficiency, and environmental benefits of energy integration in pressure-swing distillation, focusing on the separation of tetrahydrofuran/water and acetone/chloroform azeotropes. Heat integration and heat pump techniques are applied to reduce energy consumption. Three energy-efficient configurations are examined, comparing total annual cost (TAC), total energy consumption (TEC), CO<sub>2</sub> emissions, and second-law efficiency. In the tetrahydrofuran/water system, heat integration and heat pump technologies outperform conventional processes, achieving up to 50.2% TAC reduction, 59.6% TEC reduction, 82.8% CO<sub>2</sub> emission reduction, and thermodynamic efficiencies up to 23.5%. In the acetone/chloroform system, similar improvements are observed, with up to 70.9% TAC reduction, 87.2% CO<sub>2</sub> emission reduction, and thermodynamic efficiencies up to 17.6%. These findings demonstrate the effectiveness of energy-saving strategies, endorsing process intensification for environmentally sustainable azeotropic mixture separations.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772783124000281/pdfft?md5=32b3a3a1060b31f4dbda00eec11c1694&pid=1-s2.0-S2772783124000281-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the economic, energetic, exergy efficiency, and environmental benefits of energy integration in pressure-swing distillation, focusing on the separation of tetrahydrofuran/water and acetone/chloroform azeotropes. Heat integration and heat pump techniques are applied to reduce energy consumption. Three energy-efficient configurations are examined, comparing total annual cost (TAC), total energy consumption (TEC), CO2 emissions, and second-law efficiency. In the tetrahydrofuran/water system, heat integration and heat pump technologies outperform conventional processes, achieving up to 50.2% TAC reduction, 59.6% TEC reduction, 82.8% CO2 emission reduction, and thermodynamic efficiencies up to 23.5%. In the acetone/chloroform system, similar improvements are observed, with up to 70.9% TAC reduction, 87.2% CO2 emission reduction, and thermodynamic efficiencies up to 17.6%. These findings demonstrate the effectiveness of energy-saving strategies, endorsing process intensification for environmentally sustainable azeotropic mixture separations.