Theoretical studies on benzonitrile-carbazole-based pure organic molecules with room-temperature phosphorescence

Wen-Kai Chen , Jing-Yao Kang , Yan-Jiang Wang , Yuan-Jun Gao , Yanli Zeng
{"title":"Theoretical studies on benzonitrile-carbazole-based pure organic molecules with room-temperature phosphorescence","authors":"Wen-Kai Chen ,&nbsp;Jing-Yao Kang ,&nbsp;Yan-Jiang Wang ,&nbsp;Yuan-Jun Gao ,&nbsp;Yanli Zeng","doi":"10.1016/j.nxmate.2024.100351","DOIUrl":null,"url":null,"abstract":"<div><p>Herein we employ density functional theory (DFT) and linear response time-dependent density functional theory (LR-TDDFT) together with our own n-layered integrated molecular orbital and molecular mechanics (ONIOM)-based quantum mechanical/molecular mechanics (QM/MM) methods to study the room-temperature phosphorescent (RTP) micro-mechanism of several benzonitrile-carbazole (CzBz-X) molecules (i.e. CzBz-H, CzBz-F, CzBz-Cl, CzBz-Br) in liquid and solid state. Based on the calculated the ground- and excited-state geometric and electronic structures, the absorption and emission spectra are simulated and agreed well with previous experimental observation. The intersystem crossing (ISC) rate constants of S<sub>1</sub> -&gt; T<sub>1</sub> obtained by the formula derived from the Fermi golden rule are small in liquid state, while the ISC rate constants are comparable to the relative radiative rate constants of S<sub>1</sub> -&gt;S<sub>0</sub> in solid state. Molecular vibrations are restricted in solid state, which lead to the decrease of reorganization energies and Huang-Rhys factors, and the increase of ISC rate constants. Both the heavy-atom effect and aggregation effect play important roles in improving the RTP performance in CzBz-X compounds. Through quantum chemistry calculations, the present work not only elucidates the RTP mechanism and the significance of heavy-atom and aggregation effects in CzBz-X, but also provides new insights for designing novel RTP materials.</p></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100351"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982282400248X/pdfft?md5=3f73f6021165ba85020641ae6b57ba77&pid=1-s2.0-S294982282400248X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982282400248X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Herein we employ density functional theory (DFT) and linear response time-dependent density functional theory (LR-TDDFT) together with our own n-layered integrated molecular orbital and molecular mechanics (ONIOM)-based quantum mechanical/molecular mechanics (QM/MM) methods to study the room-temperature phosphorescent (RTP) micro-mechanism of several benzonitrile-carbazole (CzBz-X) molecules (i.e. CzBz-H, CzBz-F, CzBz-Cl, CzBz-Br) in liquid and solid state. Based on the calculated the ground- and excited-state geometric and electronic structures, the absorption and emission spectra are simulated and agreed well with previous experimental observation. The intersystem crossing (ISC) rate constants of S1 -> T1 obtained by the formula derived from the Fermi golden rule are small in liquid state, while the ISC rate constants are comparable to the relative radiative rate constants of S1 ->S0 in solid state. Molecular vibrations are restricted in solid state, which lead to the decrease of reorganization energies and Huang-Rhys factors, and the increase of ISC rate constants. Both the heavy-atom effect and aggregation effect play important roles in improving the RTP performance in CzBz-X compounds. Through quantum chemistry calculations, the present work not only elucidates the RTP mechanism and the significance of heavy-atom and aggregation effects in CzBz-X, but also provides new insights for designing novel RTP materials.

苯腈-咔唑基纯有机分子室温磷光理论研究
在此,我们采用密度泛函理论(DFT)和线性响应时间相关密度泛函理论(LR-TDDFT),以及我们自己开发的基于 n 层集成分子轨道和分子力学(ONIOM)的量子力学/分子力学(QM/MM)方法,研究了几种苯腈-咔唑(CzBz-X)分子(即 CzBz-H、CzBz-F、CzBz-Cl、CzBz-Br)在液态和固态下的室温磷光(RTP)微观机制。即 CzBz-H、CzBz-F、CzBz-Cl 和 CzBz-Br)在液态和固态下的微观机制。根据计算出的基态和激发态几何和电子结构,模拟了吸收和发射光谱,并与之前的实验观测结果吻合。根据费米金科玉律推导的公式得到的 S1 -> T1 的系统间交叉(ISC)速率常数在液态时很小,而在固态时,ISC 速率常数与 S1 -> S0 的相对辐射速率常数相当。分子振动在固态中受到限制,导致重组能和黄里斯因子降低,ISC 速率常数升高。重原子效应和聚集效应在改善 CzBz-X 化合物的 RTP 性能方面发挥了重要作用。通过量子化学计算,本研究不仅阐明了 CzBz-X 中的 RTP 机理以及重原子效应和聚集效应的意义,还为设计新型 RTP 材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信