{"title":"Effect and mechanism of steel slag composition on CO2 fixation rate under microbial and non-microbial","authors":"Yijin Fan , Chunxiang Qian","doi":"10.1016/j.bej.2024.109467","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we used microorganisms and steel slag to reduce CO<sub>2</sub> emissions. The main objective is to investigate the influence and mechanisms of CO<sub>2</sub> fixation rate based on the composition of steel slag. In the absence of microorganisms, steel slag powders with higher C<sub>2</sub>S content exhibit higher CO<sub>2</sub> fixation rate. The absolute content of C<sub>2</sub>S decreases by 2.16–5.86 % and 3.43–14.21 % at 2 h and 48 h of carbon sequestration reaction, respectively. Under the action of microorganisms, the CO<sub>2</sub> fixation rate of different steel slags increases by more than two-fold, with increases in amount of CO<sub>2</sub> fixation at 2 h and 48 h of reaction being 142–169 % and 166–191 %, respectively. Microorganisms can enhance the reaction degree of C<sub>2</sub>S, C<sub>3</sub>S, and C<sub>2</sub>F phases in different steel slags. The increase in amount of CO<sub>2</sub> fixation is particularly significant for steel slag powders with high C<sub>2</sub>S and C<sub>2</sub>F content. Enzymes secreted by microorganisms in the early stage of carbon sequestration can also increase the concentration of HCO<sub>3</sub><sup>-</sup> and CO<sub>3</sub><sup>2-</sup> in the liquid phase, but this is influenced by the pH value and Ca<sup>2+</sup> concentration of different steel slag leachates. Steel slag powders with lower leachate pH values and containing small amounts of Ca<sup>2+</sup> will be more conducive to microorganisms enhancing the early-stage CO<sub>2</sub> fixation rate.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"211 ","pages":"Article 109467"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002547","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we used microorganisms and steel slag to reduce CO2 emissions. The main objective is to investigate the influence and mechanisms of CO2 fixation rate based on the composition of steel slag. In the absence of microorganisms, steel slag powders with higher C2S content exhibit higher CO2 fixation rate. The absolute content of C2S decreases by 2.16–5.86 % and 3.43–14.21 % at 2 h and 48 h of carbon sequestration reaction, respectively. Under the action of microorganisms, the CO2 fixation rate of different steel slags increases by more than two-fold, with increases in amount of CO2 fixation at 2 h and 48 h of reaction being 142–169 % and 166–191 %, respectively. Microorganisms can enhance the reaction degree of C2S, C3S, and C2F phases in different steel slags. The increase in amount of CO2 fixation is particularly significant for steel slag powders with high C2S and C2F content. Enzymes secreted by microorganisms in the early stage of carbon sequestration can also increase the concentration of HCO3- and CO32- in the liquid phase, but this is influenced by the pH value and Ca2+ concentration of different steel slag leachates. Steel slag powders with lower leachate pH values and containing small amounts of Ca2+ will be more conducive to microorganisms enhancing the early-stage CO2 fixation rate.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.