Clinical research using real-world data: A narrative review

IF 2.4 Q2 RESPIRATORY SYSTEM
Yuya Kimura , Taisuke Jo , Hiroki Matsui , Hideo Yasunaga
{"title":"Clinical research using real-world data: A narrative review","authors":"Yuya Kimura ,&nbsp;Taisuke Jo ,&nbsp;Hiroki Matsui ,&nbsp;Hideo Yasunaga","doi":"10.1016/j.resinv.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Randomized controlled trials (RCTs) and studies using real-world data (RWD) each have their strengths and weaknesses, and can effectively complement each other. When RCTs are not feasible, RWD studies offer a valuable alternative. In this narrative review, we examine several types of RWD studies, focusing on studies utilizing administrative claims databases. These include the Diagnosis Procedure Combination databases, commercially available health checkups and healthcare claims databases (such as the JDMC and DeSC databases), and the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB). Given that these claims databases cover different populations, patient settings, variables, and levels of accessibility, it is crucial for researchers to select the most appropriate data source to effectively address their research questions. Additionally, it is desirable for readers of studies using these databases to be aware of their characteristics in order to fully understand the context and limitations of the research findings.</p></div>","PeriodicalId":20934,"journal":{"name":"Respiratory investigation","volume":"62 6","pages":"Pages 929-934"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory investigation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212534524001230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Randomized controlled trials (RCTs) and studies using real-world data (RWD) each have their strengths and weaknesses, and can effectively complement each other. When RCTs are not feasible, RWD studies offer a valuable alternative. In this narrative review, we examine several types of RWD studies, focusing on studies utilizing administrative claims databases. These include the Diagnosis Procedure Combination databases, commercially available health checkups and healthcare claims databases (such as the JDMC and DeSC databases), and the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB). Given that these claims databases cover different populations, patient settings, variables, and levels of accessibility, it is crucial for researchers to select the most appropriate data source to effectively address their research questions. Additionally, it is desirable for readers of studies using these databases to be aware of their characteristics in order to fully understand the context and limitations of the research findings.

使用真实世界数据进行临床研究:叙述性综述
随机对照试验(RCT)和使用真实世界数据的研究(RWD)各有优缺点,可以有效互补。当随机对照试验不可行时,真实世界数据研究可提供一种有价值的替代方法。在这篇叙述性综述中,我们考察了几种类型的 RWD 研究,重点是利用行政索赔数据库进行的研究。这些数据库包括诊断程序组合数据库、商业化的健康体检和医疗索赔数据库(如 JDMC 和 DeSC 数据库)以及日本全国健康保险索赔和特定健康体检数据库(NDB)。鉴于这些索赔数据库涵盖不同的人群、患者环境、变量和可访问性水平,研究人员选择最合适的数据源以有效解决其研究问题至关重要。此外,使用这些数据库进行研究的读者最好了解它们的特点,以便充分理解研究结果的背景和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Respiratory investigation
Respiratory investigation RESPIRATORY SYSTEM-
CiteScore
4.90
自引率
6.50%
发文量
114
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信