Enhanced energy storage density and efficiency of nanocomposite dielectrics by modifying polymer matrix and aminated boron nitride nanosheet

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Enhanced energy storage density and efficiency of nanocomposite dielectrics by modifying polymer matrix and aminated boron nitride nanosheet","authors":"","doi":"10.1016/j.materresbull.2024.113056","DOIUrl":null,"url":null,"abstract":"<div><p>Polymers and fillers with high dielectric constant (<em>ε</em><sub>r</sub>), charge-discharge efficiency (<em>η</em>) and breakdown strength (<em>E</em><sub>b</sub>) are fundamental to the development of nanocomposite dielectrics for superior energy storage capabilities. Herein, high-<em>ε</em><sub>r</sub> P(VDF-TrFE) is used to prepare the P(VDF-TrFE)-<em>g</em>-PMMA matrix with elevated <em>ε</em><sub>r</sub> and <em>η</em>, then the P(VDF-TrFE)-<em>g</em>-PMMA/BNNS-NH<sub>2</sub> nanocomposites with uniformly oriented distribution of <em>h</em>-BN is obtained by a squeegee casting process using amino-boron nitride (BNNS-NH<sub>2</sub>) as fillers. Thanks to the limiting effect of PMMA and the high insulating effect of BNNS-NH<sub>2</sub>, the energy storage density (<em>U</em><sub>e</sub>) of the nanocomposite is up to 15.1 J/cm<sup>3</sup> at 500 MV/m, which is 358 % and 182 % of the original P(VDF-TrFE). Furthermore, the <em>η</em> could reach to 72 %, being 184 % of neat polymer. These results demonstrate that the coordinated enhancement of <em>U</em><sub>e</sub> and <em>η</em> is critical for high performance energy storage, which provide scientific and technological support for the practicability of PVDF-based dielectrics.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824003878","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymers and fillers with high dielectric constant (εr), charge-discharge efficiency (η) and breakdown strength (Eb) are fundamental to the development of nanocomposite dielectrics for superior energy storage capabilities. Herein, high-εr P(VDF-TrFE) is used to prepare the P(VDF-TrFE)-g-PMMA matrix with elevated εr and η, then the P(VDF-TrFE)-g-PMMA/BNNS-NH2 nanocomposites with uniformly oriented distribution of h-BN is obtained by a squeegee casting process using amino-boron nitride (BNNS-NH2) as fillers. Thanks to the limiting effect of PMMA and the high insulating effect of BNNS-NH2, the energy storage density (Ue) of the nanocomposite is up to 15.1 J/cm3 at 500 MV/m, which is 358 % and 182 % of the original P(VDF-TrFE). Furthermore, the η could reach to 72 %, being 184 % of neat polymer. These results demonstrate that the coordinated enhancement of Ue and η is critical for high performance energy storage, which provide scientific and technological support for the practicability of PVDF-based dielectrics.

Abstract Image

通过改性聚合物基体和胺化氮化硼纳米片提高纳米复合电介质的储能密度和效率
具有高介电常数(εr)、充放电效率(η)和击穿强度(Eb)的聚合物和填料是开发具有优异储能能力的纳米复合电介质的基础。本文采用高εr P(VDF-TrFE)制备具有较高εr和η的P(VDF-TrFE)-g-PMMA基体,然后以氨基氮化硼(BNNS-NH2)为填料,通过挤压铸造工艺获得具有均匀取向分布的h-BN的P(VDF-TrFE)-g-PMMA/BNNS-NH2纳米复合材料。由于 PMMA 的限制效应和 BNNS-NH2 的高绝缘效应,该纳米复合材料在 500 MV/m 时的能量存储密度(Ue)高达 15.1 J/cm3,分别是原始 P(VDF-TrFE) 的 358 % 和 182 %。此外,η 可达到 72%,是纯聚合物的 184%。这些结果表明,Ue 和 η 的协调增强对于高性能储能至关重要,这为基于 PVDF 的电介质的实用性提供了科学和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信