Rapid, low-cost determination of Hg2+, Cu2+, and Fe3+ using a cellulose paper-based sensor and UV–vis method with silver nanoparticles synthesized with S. mammosum
Fernanda Pilaquinga , Jeroni Morey , Paulino Duel , Gabriela S. Yánez-Jácome , Esthefanía Chuisaca-Londa , Karen Guzmán , Jazel Caiza , Melanny Tapia , Alexis Debut , Karla Vizuete , María de las Nieves Piña
{"title":"Rapid, low-cost determination of Hg2+, Cu2+, and Fe3+ using a cellulose paper-based sensor and UV–vis method with silver nanoparticles synthesized with S. mammosum","authors":"Fernanda Pilaquinga , Jeroni Morey , Paulino Duel , Gabriela S. Yánez-Jácome , Esthefanía Chuisaca-Londa , Karen Guzmán , Jazel Caiza , Melanny Tapia , Alexis Debut , Karla Vizuete , María de las Nieves Piña","doi":"10.1016/j.sbsr.2024.100680","DOIUrl":null,"url":null,"abstract":"<div><p>As water effluents are often highly contaminated with metals, having a quick and cost-effective method of analysis is crucial. This study used the supernatant derived from the green synthesis of silver nanoparticles (AgNPs) with <em>Solanum mammosum</em> to detect mercury, copper, and iron with a low-cost cellulose paper-based sensor and a rapid colorimetric method applying ultraviolet–visible spectroscopy (UV–Vis). AgNPs in two precursor concentrations using silver nitrate, 1 mM (17.4 ± 9 nm) and 50 mM (and 22 ± 8.1 nm), were utilized to assess the efficacy of the analysis and removal of Hg<sup>2+</sup>, Cu<sup>2+</sup>, and Fe<sup>3+</sup> from contaminated water. Cellulose paper-based sensor showed limits of detection (LODs) for Hg<sup>2+</sup> of 2.46 and 123 μM using AgNPs at concentrations of 1 and 50 mM, respectively. For Cu<sup>2+</sup>, the LODs were 55 and 2750 μM, and for Fe<sup>3+</sup>, the LODs were 49 and 2470 μM using the respective concentrations. To differentiate and detect the cations with the naked eye, a potassium iodide and potassium ferrocyanide (1:1) aqueous solution was used, producing a yellow, pink, and blue color for Hg<sup>2+</sup>, Cu<sup>2+</sup>, and Fe<sup>3+</sup>, respectively. Additionally, the titration curves of Hg<sup>2+</sup>, Fe<sup>3+</sup>, and Cu<sup>2+</sup> were examined by UV–Vis using the supernatant liquid. The LODs for the UV–Vis method using AgNPs at a concentration of 1 mM were 1.50 μM for Hg<sup>2+</sup>, 10.7 μM for Cu<sup>2+</sup>, and 4.33 μM for Fe<sup>3+</sup>, while the LODs for AgNPs at 50 mM were 5.75, 27.6, and 15 μM for Hg<sup>2+</sup>, Cu<sup>2+</sup>, and Fe<sup>3+</sup>, respectively. Furthermore, these nanoparticles were utilized to assess the efficacy of the removal of Hg<sup>2+</sup>, Cu<sup>2+</sup>, and Fe<sup>3+</sup> from contaminated water. Removal efficiency with the solid 50 mM AgNPs was analyzed via flame absorption spectrophotometry; values over 95% were obtained for the three ions. The results underscore the effectiveness of a green synthesis approach to generating AgNPs, enabling efficient and economical cation analysis and water decontamination.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"45 ","pages":"Article 100680"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221418042400062X/pdfft?md5=c04cacbc1ad844b5bf1a9eae761103e1&pid=1-s2.0-S221418042400062X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221418042400062X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As water effluents are often highly contaminated with metals, having a quick and cost-effective method of analysis is crucial. This study used the supernatant derived from the green synthesis of silver nanoparticles (AgNPs) with Solanum mammosum to detect mercury, copper, and iron with a low-cost cellulose paper-based sensor and a rapid colorimetric method applying ultraviolet–visible spectroscopy (UV–Vis). AgNPs in two precursor concentrations using silver nitrate, 1 mM (17.4 ± 9 nm) and 50 mM (and 22 ± 8.1 nm), were utilized to assess the efficacy of the analysis and removal of Hg2+, Cu2+, and Fe3+ from contaminated water. Cellulose paper-based sensor showed limits of detection (LODs) for Hg2+ of 2.46 and 123 μM using AgNPs at concentrations of 1 and 50 mM, respectively. For Cu2+, the LODs were 55 and 2750 μM, and for Fe3+, the LODs were 49 and 2470 μM using the respective concentrations. To differentiate and detect the cations with the naked eye, a potassium iodide and potassium ferrocyanide (1:1) aqueous solution was used, producing a yellow, pink, and blue color for Hg2+, Cu2+, and Fe3+, respectively. Additionally, the titration curves of Hg2+, Fe3+, and Cu2+ were examined by UV–Vis using the supernatant liquid. The LODs for the UV–Vis method using AgNPs at a concentration of 1 mM were 1.50 μM for Hg2+, 10.7 μM for Cu2+, and 4.33 μM for Fe3+, while the LODs for AgNPs at 50 mM were 5.75, 27.6, and 15 μM for Hg2+, Cu2+, and Fe3+, respectively. Furthermore, these nanoparticles were utilized to assess the efficacy of the removal of Hg2+, Cu2+, and Fe3+ from contaminated water. Removal efficiency with the solid 50 mM AgNPs was analyzed via flame absorption spectrophotometry; values over 95% were obtained for the three ions. The results underscore the effectiveness of a green synthesis approach to generating AgNPs, enabling efficient and economical cation analysis and water decontamination.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.