Haowei Yao , Mengyang Xing , Zhen Lou , Haitao Su , Huaitao Song , Yang Zhang , Yongzhuang Cai
{"title":"Simulation of fire combustion process in valve hall of DC converter power station","authors":"Haowei Yao , Mengyang Xing , Zhen Lou , Haitao Su , Huaitao Song , Yang Zhang , Yongzhuang Cai","doi":"10.1016/j.jlp.2024.105401","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the fire danger of the valve hall, a 3D numerical model of the DC converter substation's valve hall is created by using the fire dynamics simulator (FDS) program and the fire burning process of the valve hall is simulated. In particular, the procedure of simulating the fire burning in the valve hall under various fire source positions is accomplished by varying certain parameters. The smoke spreading process, ambient temperature field, and heat release rate curve under various fire source placements are compared based on the results of the simulation calculations. The findings demonstrate that under various fire source locations, the valve hall's combustion process varies as well. This study compares the time for smoke to fill the entire valve hall, the maximum temperature within the valve hall, and the maximum fire source heat release efficiency in different fire scenes. The results indicate that in fire scenes where the fire source is closer to the middle position, the time for smoke to spread throughout the valve hall is shorter, and the fire source heat release rate is higher. Conversely, in fire scenes where the fire source is closer to the edge, the maximum temperature within the valve hall is higher. The numerical simulation of the valve hall in this DC converter station assessed the hazards under different fire scenes, aiming to maximize the safety of the valve hall. It provides reliable guidance for maximizing the safety of the valve hall and facilitating firefighting and rescue efforts, thus protecting personal safety and minimizing property damage.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"91 ","pages":"Article 105401"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001591","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the fire danger of the valve hall, a 3D numerical model of the DC converter substation's valve hall is created by using the fire dynamics simulator (FDS) program and the fire burning process of the valve hall is simulated. In particular, the procedure of simulating the fire burning in the valve hall under various fire source positions is accomplished by varying certain parameters. The smoke spreading process, ambient temperature field, and heat release rate curve under various fire source placements are compared based on the results of the simulation calculations. The findings demonstrate that under various fire source locations, the valve hall's combustion process varies as well. This study compares the time for smoke to fill the entire valve hall, the maximum temperature within the valve hall, and the maximum fire source heat release efficiency in different fire scenes. The results indicate that in fire scenes where the fire source is closer to the middle position, the time for smoke to spread throughout the valve hall is shorter, and the fire source heat release rate is higher. Conversely, in fire scenes where the fire source is closer to the edge, the maximum temperature within the valve hall is higher. The numerical simulation of the valve hall in this DC converter station assessed the hazards under different fire scenes, aiming to maximize the safety of the valve hall. It provides reliable guidance for maximizing the safety of the valve hall and facilitating firefighting and rescue efforts, thus protecting personal safety and minimizing property damage.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.