A difference finite element method based on the conforming P1(x,y)×Q1(z,s) element for the 4D Poisson equation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yaru Liu , Yinnian He , Dongwoo Sheen , Xinlong Feng
{"title":"A difference finite element method based on the conforming P1(x,y)×Q1(z,s) element for the 4D Poisson equation","authors":"Yaru Liu ,&nbsp;Yinnian He ,&nbsp;Dongwoo Sheen ,&nbsp;Xinlong Feng","doi":"10.1016/j.camwa.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a difference finite element method (DFEM) for solving the Poisson equation in the four-dimensional (4D) domain Ω. The method combines finite difference discretization based on the <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-element in the third and fourth directions with finite element discretization based on the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-element in the other directions. In this way, the numerical solution of the 4D Poisson equation can be transformed into a series of finite element solutions of the 2D Poisson equation. Moreover, we prove that the DFE solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> satisfies <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-stability, and the error function <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>−</mo><mi>u</mi></math></span> achieves first-order convergence under the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-error. Finally, we provide three numerical examples to verify the accuracy and efficiency of the method.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003717","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a difference finite element method (DFEM) for solving the Poisson equation in the four-dimensional (4D) domain Ω. The method combines finite difference discretization based on the Q1-element in the third and fourth directions with finite element discretization based on the P1-element in the other directions. In this way, the numerical solution of the 4D Poisson equation can be transformed into a series of finite element solutions of the 2D Poisson equation. Moreover, we prove that the DFE solution uH satisfies H1-stability, and the error function uHu achieves first-order convergence under the H1-error. Finally, we provide three numerical examples to verify the accuracy and efficiency of the method.

基于符合 P1(x,y)×Q1(z,s)元素的差分有限元法,用于四维泊松方程
本文提出了一种求解四维(4D)域 Ω 中泊松方程的差分有限元方法(DFEM)。 该方法将第三和第四方向基于 Q1 元素的有限差分离散化与其他方向基于 P1 元素的有限元离散化相结合。通过这种方法,4D 泊松方程的数值解可以转化为一系列 2D 泊松方程的有限元解。此外,我们还证明了 DFE 解 uH 满足 H1 稳定性,误差函数 uH-u 在 H1 误差下实现了一阶收敛。最后,我们提供了三个数值示例来验证该方法的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信