{"title":"Stoichiometric theory in aquatic carbon sequestration under elevated carbon dioxide","authors":"Zhenyao Sun , Hao Wang , Meng Fan","doi":"10.1016/j.mbs.2024.109285","DOIUrl":null,"url":null,"abstract":"<div><p>Global climate change projections indicate that the atmospheric concentration of carbon dioxide will increase twofold by the end of this century. However, how the elevated carbon dioxide affects aquatic carbon sequestration and species composition within aquatic microbial communities remains inconclusive. To address this knowledge gap, we formulate a bacteria-algae interaction model to characterize the effects of elevated carbon dioxide on aquatic ecosystems and rigorously derive the thresholds determining the persistence and extinction of algae or bacteria. We explore the impacts of abiotic factors, such as light intensity, nutrient concentration, inorganic carbon concentration and water depth, on algae and bacteria dynamics. The main findings indicate that the elevated atmospheric carbon dioxide will increase algae biomass and thus facilitate carbon sequestration. On the other hand, the elevated atmospheric carbon dioxide will reduce bacterial biomass, and excessive carbon dioxide concentrations can even destroy bacterial communities. Numerical simulations indicate that eutrophication and intensified light intensity can reduce aquatic carbon sequestration, while elevated atmospheric carbon dioxide levels can mitigate eutrophication. Furthermore, higher algae respiration and death rates are detrimental to carbon sequestration, whereas the increased bacterial respiration rates promote carbon sequestration.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"376 ","pages":"Article 109285"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001457","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Global climate change projections indicate that the atmospheric concentration of carbon dioxide will increase twofold by the end of this century. However, how the elevated carbon dioxide affects aquatic carbon sequestration and species composition within aquatic microbial communities remains inconclusive. To address this knowledge gap, we formulate a bacteria-algae interaction model to characterize the effects of elevated carbon dioxide on aquatic ecosystems and rigorously derive the thresholds determining the persistence and extinction of algae or bacteria. We explore the impacts of abiotic factors, such as light intensity, nutrient concentration, inorganic carbon concentration and water depth, on algae and bacteria dynamics. The main findings indicate that the elevated atmospheric carbon dioxide will increase algae biomass and thus facilitate carbon sequestration. On the other hand, the elevated atmospheric carbon dioxide will reduce bacterial biomass, and excessive carbon dioxide concentrations can even destroy bacterial communities. Numerical simulations indicate that eutrophication and intensified light intensity can reduce aquatic carbon sequestration, while elevated atmospheric carbon dioxide levels can mitigate eutrophication. Furthermore, higher algae respiration and death rates are detrimental to carbon sequestration, whereas the increased bacterial respiration rates promote carbon sequestration.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.