Simon Bernatz, Ian G Reddin, Tim R Fenton, Thomas J Vogl, Peter J Wild, Jens Köllermann, Philipp Mandel, Mike Wenzel, Benedikt Hoeh, Scherwin Mahmoudi, Vitali Koch, Leon D Grünewald, Renate Hammerstingl, Claudia Döring, Patrick N Harter, Katharina J Weber
{"title":"Epigenetic profiling of prostate cancer reveals potential prognostic signatures.","authors":"Simon Bernatz, Ian G Reddin, Tim R Fenton, Thomas J Vogl, Peter J Wild, Jens Köllermann, Philipp Mandel, Mike Wenzel, Benedikt Hoeh, Scherwin Mahmoudi, Vitali Koch, Leon D Grünewald, Renate Hammerstingl, Claudia Döring, Patrick N Harter, Katharina J Weber","doi":"10.1007/s00432-024-05921-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>While epigenetic profiling discovered biomarkers in several tumor entities, its application in prostate cancer is still limited. We explored DNA methylation-based deconvolution of benign and malignant prostate tissue for biomarker discovery and the potential of radiomics as a non-invasive surrogate.</p><p><strong>Methods: </strong>We retrospectively included 30 patients (63 [58-79] years) with prostate cancer (PCa) who had a multiparametric MRI of the prostate before radical prostatectomy between 2014 and 2019. The control group comprised four patients with benign prostate tissue adjacent to the PCa lesions and four patients with benign prostatic hyperplasia. Tissue punches of all lesions were obtained. DNA methylation analysis and reference-free in silico deconvolution were conducted to retrieve Latent Methylation Components (LCMs). LCM-based clustering was analyzed for cellular composition and correlated with clinical disease parameters. Additionally, PCa and adjacent benign lesions were analyzed using radiomics to predict the epigenetic signatures non-invasively.</p><p><strong>Results: </strong>LCMs identified two clusters with potential prognostic impact. Cluster one was associated with malignant prostate tissue (p < 0.001) and reduced immune-cell-related signatures (p = 0.004) of CD19 and CD4 cells. Cluster one comprised exclusively malignant prostate tissue enriched for significant prostate cancer and advanced tumor stages (p < 0.03 for both). No radiomics model could non-invasively predict the epigenetic clusters.</p><p><strong>Conclusion: </strong>Epigenetic clusters were associated with prognostically and clinically relevant metrics in prostate cancer. Further, immune cell-related signatures differed significantly between prognostically favorable and unfavorable clusters. Further research is necessary to explore potential diagnostic and therapeutic implications.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-024-05921-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: While epigenetic profiling discovered biomarkers in several tumor entities, its application in prostate cancer is still limited. We explored DNA methylation-based deconvolution of benign and malignant prostate tissue for biomarker discovery and the potential of radiomics as a non-invasive surrogate.
Methods: We retrospectively included 30 patients (63 [58-79] years) with prostate cancer (PCa) who had a multiparametric MRI of the prostate before radical prostatectomy between 2014 and 2019. The control group comprised four patients with benign prostate tissue adjacent to the PCa lesions and four patients with benign prostatic hyperplasia. Tissue punches of all lesions were obtained. DNA methylation analysis and reference-free in silico deconvolution were conducted to retrieve Latent Methylation Components (LCMs). LCM-based clustering was analyzed for cellular composition and correlated with clinical disease parameters. Additionally, PCa and adjacent benign lesions were analyzed using radiomics to predict the epigenetic signatures non-invasively.
Results: LCMs identified two clusters with potential prognostic impact. Cluster one was associated with malignant prostate tissue (p < 0.001) and reduced immune-cell-related signatures (p = 0.004) of CD19 and CD4 cells. Cluster one comprised exclusively malignant prostate tissue enriched for significant prostate cancer and advanced tumor stages (p < 0.03 for both). No radiomics model could non-invasively predict the epigenetic clusters.
Conclusion: Epigenetic clusters were associated with prognostically and clinically relevant metrics in prostate cancer. Further, immune cell-related signatures differed significantly between prognostically favorable and unfavorable clusters. Further research is necessary to explore potential diagnostic and therapeutic implications.
期刊介绍:
The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses.
The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.