Selective and Comparative Study of B/nZVCu-Fe and B/nZVCu-Zn Nanoparticles as Fluorescent Probe for Dopamine in Presence of its Interference Molecules.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Rimki Bhattacharjya, Sarojmoni Kalita, Ananya Dutta, Dipanwita Basak, Hemaprobha Saikia
{"title":"Selective and Comparative Study of B/nZVCu-Fe and B/nZVCu-Zn Nanoparticles as Fluorescent Probe for Dopamine in Presence of its Interference Molecules.","authors":"Rimki Bhattacharjya, Sarojmoni Kalita, Ananya Dutta, Dipanwita Basak, Hemaprobha Saikia","doi":"10.1007/s10895-024-03873-9","DOIUrl":null,"url":null,"abstract":"<p><p>This work focuses on the synthesis of Bentonite supported nano zero valent bimetallic nanoparticles (B/nZVCu-M NPs) to be utilized for fast and highly sensitive, reversible, fluorescent determination of dopamine (DA) in the presence of dopamine, other biomolecules and ions. The X-ray Photoelectron Spectroscopy(XPS), Powder X-Ray Diffraction(PXRD) and Scanning Electron Microscopy(SEM) revealed the formation of nanoparticles with size ranging from 15 to 20 nm. The composition was revealed by Fourier Transform Infrared(FTIR) Spectoscopy and Energy Dispersive X-Ray (EDX) Analysis. The Limits of Detection(LOD) were noted to be 5.57nM and 6.07nM. The binding of DA is noted to be reversible with respect to EDTA<sup>2-</sup>. Furthermore, the developed sensor exhibited good repeatability, satisfactory long-term stability, and was successfully used for the selective detection of dopamine sample with desired recoveries or reversibilities. The main aim of our work is to selectively detect dopamine in presence of its major interferents and biomolecules that are normally present/ co-exist with dopamine in biological systems.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03873-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This work focuses on the synthesis of Bentonite supported nano zero valent bimetallic nanoparticles (B/nZVCu-M NPs) to be utilized for fast and highly sensitive, reversible, fluorescent determination of dopamine (DA) in the presence of dopamine, other biomolecules and ions. The X-ray Photoelectron Spectroscopy(XPS), Powder X-Ray Diffraction(PXRD) and Scanning Electron Microscopy(SEM) revealed the formation of nanoparticles with size ranging from 15 to 20 nm. The composition was revealed by Fourier Transform Infrared(FTIR) Spectoscopy and Energy Dispersive X-Ray (EDX) Analysis. The Limits of Detection(LOD) were noted to be 5.57nM and 6.07nM. The binding of DA is noted to be reversible with respect to EDTA2-. Furthermore, the developed sensor exhibited good repeatability, satisfactory long-term stability, and was successfully used for the selective detection of dopamine sample with desired recoveries or reversibilities. The main aim of our work is to selectively detect dopamine in presence of its major interferents and biomolecules that are normally present/ co-exist with dopamine in biological systems.

Abstract Image

B/nZVCu-Fe 和 B/nZVCu-Zn 纳米粒子作为多巴胺荧光探针在干扰分子存在时的选择性和比较研究
这项工作的重点是合成膨润土支撑的纳米零价双金属纳米粒子(B/nZVCu-M NPs),用于在多巴胺、其他生物大分子和离子存在的情况下快速、高灵敏度、可逆、荧光测定多巴胺(DA)。X 射线光电子能谱(XPS)、粉末 X 射线衍射(PXRD)和扫描电子显微镜(SEM)显示形成了粒径为 15 至 20 纳米的纳米颗粒。傅立叶变换红外光谱(FTIR)和能量色散 X 射线(EDX)分析揭示了其成分。检测限(LOD)分别为 5.57nM 和 6.07nM。DA 与 EDTA2- 的结合是可逆的。此外,所开发的传感器具有良好的重复性和令人满意的长期稳定性,并成功地用于多巴胺样品的选择性检测,达到了预期的回收率或可逆性。我们工作的主要目的是选择性地检测生物系统中存在的多巴胺主要干扰物和通常与多巴胺同时存在的生物大分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信