Impact of four surfactants on the uptake of per- and polyfluoroalkyl substances (PFAS) by red fescue grass.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Weilan Zhang, Yanna Liang
{"title":"Impact of four surfactants on the uptake of per- and polyfluoroalkyl substances (PFAS) by red fescue grass.","authors":"Weilan Zhang, Yanna Liang","doi":"10.1080/15226514.2024.2394903","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) pose great risks to human health and the ecosystem, necessitating effective remediation strategies such as phytoremediation. Surfactants, due to their ability to increase the bioavailability of hydrophobic contaminants, are considered as potential agents to improve phytoremediation for PFAS. In this research, we explored the impact of four surfactants (sodium dodecyl sulfate (SDS), rhamnolipid, Triton X-100, and Glucopone 600 CS UP) on plant growth and the uptake of PFAS by red fescue over 110 days. The results showed that while surfactants at lower concentrations did not negatively affect plant growth, the highest dose (2,500 mg/kg) significantly reduced the dry weight of plant shoots. Although none of the four surfactants led to an increased overall removal efficiency of ∑PFAS by red fescue over 110 days, SDS did enhance the uptake of PFAS compounds with long carbon chain lengths. With SDS addition at 2,500 mg/kg, the average fold increases of long chain PFAS removal were 1.99 for perfluorooctanoic acid (PFOA), 2.44 for perfluorononanoic acid (PFNA), 2.11 for perfluorodecanoic acid (PFDA), 1.52 for perfluoroundecanoic acid (PFUnA), 1.88 for perfluorohexanesulphonic acid (PFHxS), and 2.97 for perfluorooctanesulfonic acid (PFOS). The research indicated that using surfactants, such as SDS at appropriate doses could improve phytoremediation effectiveness in mitigating long-chain PFAS, which is a known challenge in soil remediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2394903","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) pose great risks to human health and the ecosystem, necessitating effective remediation strategies such as phytoremediation. Surfactants, due to their ability to increase the bioavailability of hydrophobic contaminants, are considered as potential agents to improve phytoremediation for PFAS. In this research, we explored the impact of four surfactants (sodium dodecyl sulfate (SDS), rhamnolipid, Triton X-100, and Glucopone 600 CS UP) on plant growth and the uptake of PFAS by red fescue over 110 days. The results showed that while surfactants at lower concentrations did not negatively affect plant growth, the highest dose (2,500 mg/kg) significantly reduced the dry weight of plant shoots. Although none of the four surfactants led to an increased overall removal efficiency of ∑PFAS by red fescue over 110 days, SDS did enhance the uptake of PFAS compounds with long carbon chain lengths. With SDS addition at 2,500 mg/kg, the average fold increases of long chain PFAS removal were 1.99 for perfluorooctanoic acid (PFOA), 2.44 for perfluorononanoic acid (PFNA), 2.11 for perfluorodecanoic acid (PFDA), 1.52 for perfluoroundecanoic acid (PFUnA), 1.88 for perfluorohexanesulphonic acid (PFHxS), and 2.97 for perfluorooctanesulfonic acid (PFOS). The research indicated that using surfactants, such as SDS at appropriate doses could improve phytoremediation effectiveness in mitigating long-chain PFAS, which is a known challenge in soil remediation.

四种表面活性剂对红羊茅吸收全氟和多氟烷基物质 (PFAS) 的影响。
全氟烷基和多氟烷基物质(PFAS)对人类健康和生态系统构成巨大风险,因此有必要采取有效的修复策略,如植物修复。表面活性剂能够提高疏水性污染物的生物利用率,因此被认为是改善 PFAS 植物修复的潜在药剂。在这项研究中,我们探讨了四种表面活性剂(十二烷基硫酸钠(SDS)、鼠李糖脂、Triton X-100 和 Glucopone 600 CS UP)在 110 天内对植物生长和红羊茅吸收 PFAS 的影响。结果表明,虽然较低浓度的表面活性剂不会对植物生长产生负面影响,但最高剂量(2,500 毫克/千克)会显著降低植物嫩枝的干重。虽然四种表面活性剂都没有提高红羊茅在 110 天内对∑PFAS 的总体去除效率,但 SDS 确实提高了对碳链长的 PFAS 化合物的吸收。在添加 2,500 毫克/千克 SDS 的情况下,全氟辛酸(PFOA)、全氟壬酸(PFNA)、全氟十二烷酸(PFNA)和全氟辛酸(PFOA)的长链 PFAS 去除率分别平均增加了 1.99 倍、2.44 倍和 2.11 倍。全氟癸酸 (PFDA)为 2.11,全氟十一酸 (PFUnA)为 1.52,全氟己烷磺酸 (PFHxS) 为 1.88,全氟辛烷磺酸 (PFOS) 为 2.97。研究表明,使用适当剂量的 SDS 等表面活性剂可以提高植物修复在减轻长链全氟辛烷磺酸方面的效果,而这正是土壤修复中的一个已知难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信