Roberto Nunez, Elie Alhajjar, Daniel Jaskowak, Zachary C Danziger, Giovanna Guidoboni
{"title":"Onset of Spontaneous Filling and Voiding Cycles in the Lower Urinary Tract: A Modeling Study.","authors":"Roberto Nunez, Elie Alhajjar, Daniel Jaskowak, Zachary C Danziger, Giovanna Guidoboni","doi":"10.1007/s11538-024-01320-1","DOIUrl":null,"url":null,"abstract":"<p><p>Spontaneous filling and voiding cycles represent a key dynamical feature of the healthy lower urinary tract. Some urinary tract dysfunctions, such as over-flow incontinence, may alter the natural occurrence of these cycles. As the function of the lower urinary tract arises from the interplay of a multitude of factors, it is difficult to determine which of them can be modulated to regain spontaneous cycles. In this study, we develop a mathematical model of the lower urinary tract that can capture filling and voiding cycles in the form of periodic solutions of a system of ordinary differential equations. After experimental validation, we utilize this model to study the effect that several physiological quantities have on the onset of cycles. We find that some parameters have an associated numerical threshold that determines whether the system exhibits healthy cycles or settles in a state of constant overflow.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01320-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Spontaneous filling and voiding cycles represent a key dynamical feature of the healthy lower urinary tract. Some urinary tract dysfunctions, such as over-flow incontinence, may alter the natural occurrence of these cycles. As the function of the lower urinary tract arises from the interplay of a multitude of factors, it is difficult to determine which of them can be modulated to regain spontaneous cycles. In this study, we develop a mathematical model of the lower urinary tract that can capture filling and voiding cycles in the form of periodic solutions of a system of ordinary differential equations. After experimental validation, we utilize this model to study the effect that several physiological quantities have on the onset of cycles. We find that some parameters have an associated numerical threshold that determines whether the system exhibits healthy cycles or settles in a state of constant overflow.