Min-Rui Wang , Jun-Hua Bao , Xiao-Yan Ma , Zi-Han Yan , Zhen-Hua Cui , Li-Ying Zhu , Dong Zhang , Qiao-Chun Wang
{"title":"Vitrification cryo-foil method for shoot tip cryopreservation and virus eradication in apple","authors":"Min-Rui Wang , Jun-Hua Bao , Xiao-Yan Ma , Zi-Han Yan , Zhen-Hua Cui , Li-Ying Zhu , Dong Zhang , Qiao-Chun Wang","doi":"10.1016/j.cryobiol.2024.104957","DOIUrl":null,"url":null,"abstract":"<div><p>Establishment of a new method for improved shoot tip cryopreservation is crucial to facilitate the long-term preservation of plant germplasm as well as the use of cryotherapy for pathogen eradication. The present study reported a vitrification (V) cryo-foil method for shoot tip cryopreservation and virus eradication in apple. Shoot tip regrowth levels after cryopreservation were comparable among V cryo-foil (53 %), V cryo-plate (46 %) and conventional droplet vitrification (Dr-vi, 48 %). The V cryo-foil is more efficient to perform than Dr-vi as more shoot tips can be cryopreserved by one person. In the histological study applying an image-overlaying strategy, shoot tips cryopreserved by V cryo-foil showed a higher survival chance in the youngest leaf primordia than in the apical dome. When V cryo-foil was tested for virus eradication, fifty-five percent (55 %) of cryo-derived shoots were free of the apple stem pitting virus (ASPV), while none and less than 10 % were free of the apple stem grooving virus (ASGV) and the apple chlorotic leaf spot virus (ACLSV), respectively. Thus, these two viruses were efficiently preserved by V cryo-foil cryopreservation. Noticeably, although the shoot regrowth level was reduced to 27 %, a higher frequency (81 %) of ASPV eradication was achieved when a reduced duration of cryoprotectant exposure was applied in V cryo-foil, supporting the use of insufficient cryoprotection for improved virus eradication.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011224024001123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Establishment of a new method for improved shoot tip cryopreservation is crucial to facilitate the long-term preservation of plant germplasm as well as the use of cryotherapy for pathogen eradication. The present study reported a vitrification (V) cryo-foil method for shoot tip cryopreservation and virus eradication in apple. Shoot tip regrowth levels after cryopreservation were comparable among V cryo-foil (53 %), V cryo-plate (46 %) and conventional droplet vitrification (Dr-vi, 48 %). The V cryo-foil is more efficient to perform than Dr-vi as more shoot tips can be cryopreserved by one person. In the histological study applying an image-overlaying strategy, shoot tips cryopreserved by V cryo-foil showed a higher survival chance in the youngest leaf primordia than in the apical dome. When V cryo-foil was tested for virus eradication, fifty-five percent (55 %) of cryo-derived shoots were free of the apple stem pitting virus (ASPV), while none and less than 10 % were free of the apple stem grooving virus (ASGV) and the apple chlorotic leaf spot virus (ACLSV), respectively. Thus, these two viruses were efficiently preserved by V cryo-foil cryopreservation. Noticeably, although the shoot regrowth level was reduced to 27 %, a higher frequency (81 %) of ASPV eradication was achieved when a reduced duration of cryoprotectant exposure was applied in V cryo-foil, supporting the use of insufficient cryoprotection for improved virus eradication.