{"title":"General Synthesis of High-Entropy Oxides and Carbon-Supported High-Entropy Oxides by Mechanochemistry.","authors":"Ying Gao, Xicai Tian, Qiang Niu, Pengfei Zhang","doi":"10.1002/cssc.202401517","DOIUrl":null,"url":null,"abstract":"<p><p>High-entropy oxides (HEOs) have been receiving a lot of attention due to their excellent properties. However, current common methods for preparing HEOs usually involve high-temperature processes. The development of green synthesis techniques remains an important issue. Carbon-supported HEOs have shown excellent performance in electrochemical energy storage in recent years. Crucially, the traditional methods cannot synthesize carbon-supported HEOs under N<sub>2</sub> or air atmospheres. Toward this end, a universal method for preparing carbon-supported HEOs was proposed. During this process, without high-temperature post-treatment, high-entropy LaMnO<sub>3</sub> could be synthesized in 2 hours using the mechanical ball-milling method. Furthermore, this method was universal and has been proved in the synthesis of a series of HEOs such as PrVO<sub>3</sub>, SmVO<sub>3</sub>, and MgAl<sub>2</sub>O<sub>4</sub>. The LaMnO<sub>3</sub> species synthesized by this method exhibit excellent catalytic performance in CO combustion and could maintain a conversion rate of over 97 % for 350 hours. Subsequently, carbon-supported HEOs could be obtained with 0.5 hours of additional ball-milling, offering significant advantages over traditional methods. This process provides a potential method to synthesize carbon-supported HEOs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401517"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401517","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy oxides (HEOs) have been receiving a lot of attention due to their excellent properties. However, current common methods for preparing HEOs usually involve high-temperature processes. The development of green synthesis techniques remains an important issue. Carbon-supported HEOs have shown excellent performance in electrochemical energy storage in recent years. Crucially, the traditional methods cannot synthesize carbon-supported HEOs under N2 or air atmospheres. Toward this end, a universal method for preparing carbon-supported HEOs was proposed. During this process, without high-temperature post-treatment, high-entropy LaMnO3 could be synthesized in 2 hours using the mechanical ball-milling method. Furthermore, this method was universal and has been proved in the synthesis of a series of HEOs such as PrVO3, SmVO3, and MgAl2O4. The LaMnO3 species synthesized by this method exhibit excellent catalytic performance in CO combustion and could maintain a conversion rate of over 97 % for 350 hours. Subsequently, carbon-supported HEOs could be obtained with 0.5 hours of additional ball-milling, offering significant advantages over traditional methods. This process provides a potential method to synthesize carbon-supported HEOs.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology