Solvent-Engineering-Assisted Ligand Exchange Strategy for High-Efficiency AgBiS2 Quantum Dot Solar Cells

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qixuan Zhong, Bin Zhao, Yongqiang Ji, Qiuyang Li, Xiaoyu Yang, Mingyu Chu, Yiqi Hu, Lei Li, Shunde Li, Hongyu Xu, Haoming Yan, Tianyu Huang, Peng Chen, Hao-Hsin Chen, Zhangyuchang Lu, Yiming Huangfu, Jiang Wu, Dengke Wang, Ning Wang, Muhan Cao, Qihuang Gong, Rui Zhu, Lichen Zhao
{"title":"Solvent-Engineering-Assisted Ligand Exchange Strategy for High-Efficiency AgBiS2 Quantum Dot Solar Cells","authors":"Qixuan Zhong,&nbsp;Bin Zhao,&nbsp;Yongqiang Ji,&nbsp;Qiuyang Li,&nbsp;Xiaoyu Yang,&nbsp;Mingyu Chu,&nbsp;Yiqi Hu,&nbsp;Lei Li,&nbsp;Shunde Li,&nbsp;Hongyu Xu,&nbsp;Haoming Yan,&nbsp;Tianyu Huang,&nbsp;Peng Chen,&nbsp;Hao-Hsin Chen,&nbsp;Zhangyuchang Lu,&nbsp;Yiming Huangfu,&nbsp;Jiang Wu,&nbsp;Dengke Wang,&nbsp;Ning Wang,&nbsp;Muhan Cao,&nbsp;Qihuang Gong,&nbsp;Rui Zhu,&nbsp;Lichen Zhao","doi":"10.1002/anie.202412590","DOIUrl":null,"url":null,"abstract":"<p>As the initial synthesized colloidal quantum dots (CQDs) are generally capped with insulating ligands, ligand exchange strategies are essential in the fabrication of CQD films for solar cells, which can regulate the surface chemical states of CQDs to make them more suitable for thin-film optoelectronic devices. However, uncontrollable surface adsorption of water molecules during the ligand exchange process introduces new defect sites, thereby impairing the resultant device performance, which attracts more efforts devoted to it but remains a puzzle. Here, we develop a solvent-engineering-assisted ligand exchange strategy to revamp the surface adsorption, improve the exchange efficiency, and modulate the surface chemistry for the environmentally friendly lead-free silver bismuth disulfide (AgBiS<sub>2</sub>) CQDs. The optimized AgBiS<sub>2</sub> CQD solar cells deliver an outstanding champion power conversion efficiency (PCE) of up to 8.95 % and improved long-term stability. Our strategy is less environment-dependent and can produce solar cells with negligible performance variance for several batches across several months. Our work demonstrates the critical role of solvents for ligand exchange in the surface chemistry of CQDs and the realization of high-performance photovoltaic devices in a highly reproducible manner.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202412590","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the initial synthesized colloidal quantum dots (CQDs) are generally capped with insulating ligands, ligand exchange strategies are essential in the fabrication of CQD films for solar cells, which can regulate the surface chemical states of CQDs to make them more suitable for thin-film optoelectronic devices. However, uncontrollable surface adsorption of water molecules during the ligand exchange process introduces new defect sites, thereby impairing the resultant device performance, which attracts more efforts devoted to it but remains a puzzle. Here, we develop a solvent-engineering-assisted ligand exchange strategy to revamp the surface adsorption, improve the exchange efficiency, and modulate the surface chemistry for the environmentally friendly lead-free silver bismuth disulfide (AgBiS2) CQDs. The optimized AgBiS2 CQD solar cells deliver an outstanding champion power conversion efficiency (PCE) of up to 8.95 % and improved long-term stability. Our strategy is less environment-dependent and can produce solar cells with negligible performance variance for several batches across several months. Our work demonstrates the critical role of solvents for ligand exchange in the surface chemistry of CQDs and the realization of high-performance photovoltaic devices in a highly reproducible manner.

用于高效 AgBiS2 量子点太阳能电池的溶剂工程辅助配体交换策略。
由于最初合成的胶体量子点(CQDs)通常以绝缘配体封装,因此配体交换策略在太阳能电池用 CQD 薄膜的制备过程中至关重要,它可以调节 CQDs 的表面化学状态,使其更适用于薄膜光电器件。然而,在配体交换过程中,不可控的表面水分子吸附会带来新的缺陷位点,从而影响器件的性能。在此,我们开发了一种溶剂工程辅助配体交换策略,以改造表面吸附,提高交换效率,并调节环保型无铅二硫化银铋(AgBiS2)CQDs 的表面化学性质。优化后的 AgBiS2 CQD 太阳能电池的冠军功率转换效率 (PCE) 高达 8.95%,并具有更好的长期稳定性。我们的策略对环境的依赖性较低,可以在几个月内生产出几批性能差异微乎其微的太阳能电池。我们的工作证明了溶剂在 CQDs 表面化学配体交换中的关键作用,以及以高度可重现的方式实现高性能光伏器件的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信