Almost sure bounds for a weighted Steinhaus random multiplicative function

IF 1 2区 数学 Q1 MATHEMATICS
Seth Hardy
{"title":"Almost sure bounds for a weighted Steinhaus random multiplicative function","authors":"Seth Hardy","doi":"10.1112/jlms.12979","DOIUrl":null,"url":null,"abstract":"<p>We obtain almost sure bounds for the weighted sum <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>t</mi>\n </mrow>\n </msub>\n <mfrac>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mfrac>\n </mrow>\n <annotation>$\\sum _{n \\leqslant t} \\frac{f(n)}{\\sqrt {n}}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(n)$</annotation>\n </semantics></math> is a Steinhaus random multiplicative function. Specifically, we obtain the bounds predicted by exponentiating the law of the iterated logarithm, giving sharp upper and lower bounds.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12979","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12979","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain almost sure bounds for the weighted sum n t f ( n ) n $\sum _{n \leqslant t} \frac{f(n)}{\sqrt {n}}$ , where f ( n ) $f(n)$ is a Steinhaus random multiplicative function. Specifically, we obtain the bounds predicted by exponentiating the law of the iterated logarithm, giving sharp upper and lower bounds.

加权斯坦豪斯随机乘法函数的几乎确定边界
我们得到了加权和 ∑ n ⩽ t f ( n ) n $\sum _{n \leqslant t} 的几乎确定的边界。\其中 f ( n ) $f(n)$ 是一个斯坦豪斯随机乘法函数。具体来说,我们通过迭代对数的指数化法则得到了预测的边界,给出了尖锐的上下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信