Global classical solutions to a multidimensional radiation hydrodynamics model with symmetry and large initial data

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing Wei, Minyi Zhang, Changjiang Zhu
{"title":"Global classical solutions to a multidimensional radiation hydrodynamics model with symmetry and large initial data","authors":"Jing Wei,&nbsp;Minyi Zhang,&nbsp;Changjiang Zhu","doi":"10.1112/jlms.12973","DOIUrl":null,"url":null,"abstract":"<p>As a first stage to study the global large solutions of the radiation hydrodynamics model with viscosity and thermal conductivity in the high-dimensional space, we study the problems in high dimensions with some symmetry, such as the spherically or cylindrically symmetric solutions. Specifically, we will study the global classical large solutions to the radiation hydrodynamics model with spherically or cylindrically symmetric initial data. The key point is to obtain the strict positive lower and upper bounds of the density <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> and the lower bound of the temperature <span></span><math>\n <semantics>\n <mi>θ</mi>\n <annotation>$\\theta$</annotation>\n </semantics></math>. Compared with the Navier–Stokes equations, these estimates in the present paper are more complicated due to the influence of the radiation. To overcome the difficulties caused by the radiation, we construct a pointwise estimate between the radiative heat flux <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> and the temperature <span></span><math>\n <semantics>\n <mi>θ</mi>\n <annotation>$\\theta$</annotation>\n </semantics></math> by studying the boundary value problem of the corresponding ordinary differential equation. And we consider a general heat conductivity: <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mrow>\n <mo>(</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩾</mo>\n <mi>C</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>+</mo>\n <msup>\n <mi>θ</mi>\n <mi>β</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\kappa (\\rho,\\theta)\\geqslant C(1+\\theta ^\\beta)$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>⩽</mo>\n <msub>\n <mi>ρ</mi>\n <mo>+</mo>\n </msub>\n </mrow>\n <annotation>$\\rho \\leqslant \\rho _+$</annotation>\n </semantics></math>; <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mrow>\n <mo>(</mo>\n <mi>ρ</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩽</mo>\n <mi>C</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>+</mo>\n <msup>\n <mi>θ</mi>\n <mi>β</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\kappa (\\rho,\\theta)\\leqslant C(1+\\theta ^\\beta)$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>⩾</mo>\n <msub>\n <mi>ρ</mi>\n <mo>−</mo>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\rho \\geqslant \\rho _-&amp;gt;0$</annotation>\n </semantics></math>. This can be viewed as the first result about the global classical large solutions of the radiation hydrodynamics model with some symmetry in the high-dimensional space.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12973","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As a first stage to study the global large solutions of the radiation hydrodynamics model with viscosity and thermal conductivity in the high-dimensional space, we study the problems in high dimensions with some symmetry, such as the spherically or cylindrically symmetric solutions. Specifically, we will study the global classical large solutions to the radiation hydrodynamics model with spherically or cylindrically symmetric initial data. The key point is to obtain the strict positive lower and upper bounds of the density ρ $\rho$ and the lower bound of the temperature θ $\theta$ . Compared with the Navier–Stokes equations, these estimates in the present paper are more complicated due to the influence of the radiation. To overcome the difficulties caused by the radiation, we construct a pointwise estimate between the radiative heat flux q $q$ and the temperature θ $\theta$ by studying the boundary value problem of the corresponding ordinary differential equation. And we consider a general heat conductivity: κ ( ρ , θ ) C ( 1 + θ β ) $\kappa (\rho,\theta)\geqslant C(1+\theta ^\beta)$ if ρ ρ + $\rho \leqslant \rho _+$ ; κ ( ρ , θ ) C ( 1 + θ β ) $\kappa (\rho,\theta)\leqslant C(1+\theta ^\beta)$ if ρ ρ > 0 $\rho \geqslant \rho _-&gt;0$ . This can be viewed as the first result about the global classical large solutions of the radiation hydrodynamics model with some symmetry in the high-dimensional space.

具有对称性和大初始数据的多维辐射流体力学模型的全局经典解
作为研究具有粘性和热导性的辐射流体力学模型在高维空间中的全局大解的第一阶段,我们研究了具有一定对称性的高维问题,如球面对称解或圆柱对称解。具体来说,我们将研究具有球面或圆柱对称初始数据的辐射流体力学模型的全局经典大解。重点是获得密度 ρ $\rho$ 的严格正下限和上限以及温度 θ $\theta$ 的下限。与纳维-斯托克斯方程相比,由于辐射的影响,本文的这些估计更为复杂。为了克服辐射带来的困难,我们通过研究相应常微分方程的边界值问题,构建了辐射热通量 q $q$ 与温度 θ $\theta$ 之间的点估计。我们考虑一般热导率: κ ( ρ , θ ) ⩾ C ( 1 + θ β ) $\kappa (\rho,\theta)\geqslant C(1+\theta ^\beta)$ if ρ ⩽ ρ + $\rho \leqslant \rho _+$ ; κ ( ρ , θ ) ⩽ C ( 1 + θ β ) $\kappa (\rho,\theta)\leqslant C(1+\theta ^\beta)$ if ρ ⩾ ρ - > 0 $\rho \geqslant \rho _-&gt;0$ 。这可以看作是关于高维空间中具有某种对称性的辐射流体力学模型的全局经典大解的第一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信