{"title":"Innovative strategies in metal-organic frameworks for enhanced electrochemiluminescence biosensors","authors":"","doi":"10.1016/j.ccr.2024.216161","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemiluminescence (ECL) is a technique that integrates the benefits of both chemiluminescence and electrochemistry. Early illness diagnosis and hazardous material detection have both benefited greatly from its benefits, which include minimal background signal, high sensitivity, and easy operation. A novel class of porous materials known as metal-organic frameworks (MOFs) is created when organic ligands and inorganic metal nodes self-assemble. Its enormous specific surface area, many functionalized sites, adaptable structure, and range of applications in biomedicine, biosensing, and other domains have made it a hot topic in chemical and biological research. This article examines the development of MOF applications in recent years pertaining to the production of electrochemiluminescence biosensors. First, the effects of metal ions on aggregation induced electrochemiluminescence are analyzed, and design approaches for meeting the needs of ECL applications are discussed. The applications of MOFs are then categorized and described based on three factors: electroactivity, catalytically active chemicals, and carriers, in accordance with the many roles of MOFs in ECL. Lastly, present problems and obstacles are examined, and potential future routes for growth are suggested.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005071","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemiluminescence (ECL) is a technique that integrates the benefits of both chemiluminescence and electrochemistry. Early illness diagnosis and hazardous material detection have both benefited greatly from its benefits, which include minimal background signal, high sensitivity, and easy operation. A novel class of porous materials known as metal-organic frameworks (MOFs) is created when organic ligands and inorganic metal nodes self-assemble. Its enormous specific surface area, many functionalized sites, adaptable structure, and range of applications in biomedicine, biosensing, and other domains have made it a hot topic in chemical and biological research. This article examines the development of MOF applications in recent years pertaining to the production of electrochemiluminescence biosensors. First, the effects of metal ions on aggregation induced electrochemiluminescence are analyzed, and design approaches for meeting the needs of ECL applications are discussed. The applications of MOFs are then categorized and described based on three factors: electroactivity, catalytically active chemicals, and carriers, in accordance with the many roles of MOFs in ECL. Lastly, present problems and obstacles are examined, and potential future routes for growth are suggested.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.