{"title":"Existence of weak solutions to a Cahn–Hilliard–Biot system","authors":"Helmut Abels, Harald Garcke, Jonas Haselböck","doi":"10.1016/j.nonrwa.2024.104194","DOIUrl":null,"url":null,"abstract":"<div><p>We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001330/pdfft?md5=19f83d3860f7c26cb3847128235f7d3f&pid=1-s2.0-S1468121824001330-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.