A modified multi-objective particle swarm optimization (M-MOPSO) for optimal sizing of a solar–wind–battery hybrid renewable energy system

Ukoima Kelvin Nkalo , Okoro Ogbonnaya Inya , Obi, Patrick Ifeanyi , Akuru Udochukwu Bola , Davidson Innocent Ewean
{"title":"A modified multi-objective particle swarm optimization (M-MOPSO) for optimal sizing of a solar–wind–battery hybrid renewable energy system","authors":"Ukoima Kelvin Nkalo ,&nbsp;Okoro Ogbonnaya Inya ,&nbsp;Obi, Patrick Ifeanyi ,&nbsp;Akuru Udochukwu Bola ,&nbsp;Davidson Innocent Ewean","doi":"10.1016/j.solcom.2024.100082","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes and utilizes a modified multi-objective particle swarm optimization (M-MOPSO) algorithm for the optimal sizing of a solar-wind-battery hybrid renewable energy system for a rural community in Rivers State, Nigeria. Unlike previous studies that primarily focused on minimizing total economic cost (TEC) and total annual cost (TAC), this research emphasizes minimizing the loss of power supply probability (LPSP) and levelized cost of energy (LCOE). The M-MOPSO algorithm introduces a dynamic inertia weight, a unique repository update mechanism, and a dominance-based personal best update strategy, which collectively enhance its performance. Comparative analysis with PSO, NSGA-II, MOPSO and hybrid GA-PSO demonstrates that M-MOPSO consistently achieves a lower LPSP, although its LCOE remains higher. The M-MOPSO optimal configuration when simulated under various climatic scenarios was able to meet the energy needs of the community irrespective of ambient condition.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"12 ","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277294002400016X/pdfft?md5=cbcdd9f060392d2e387000ed198d1c74&pid=1-s2.0-S277294002400016X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294002400016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes and utilizes a modified multi-objective particle swarm optimization (M-MOPSO) algorithm for the optimal sizing of a solar-wind-battery hybrid renewable energy system for a rural community in Rivers State, Nigeria. Unlike previous studies that primarily focused on minimizing total economic cost (TEC) and total annual cost (TAC), this research emphasizes minimizing the loss of power supply probability (LPSP) and levelized cost of energy (LCOE). The M-MOPSO algorithm introduces a dynamic inertia weight, a unique repository update mechanism, and a dominance-based personal best update strategy, which collectively enhance its performance. Comparative analysis with PSO, NSGA-II, MOPSO and hybrid GA-PSO demonstrates that M-MOPSO consistently achieves a lower LPSP, although its LCOE remains higher. The M-MOPSO optimal configuration when simulated under various climatic scenarios was able to meet the energy needs of the community irrespective of ambient condition.

改进的多目标粒子群优化(M-MOPSO),用于优化太阳能-风能-电池混合可再生能源系统的大小
本研究提出并利用改进的多目标粒子群优化(M-MOPSO)算法,为尼日利亚河流州的一个农村社区优化太阳能-风能-电池混合可再生能源系统的规模。以往的研究主要关注总经济成本(TEC)和年总成本(TAC)的最小化,与此不同,本研究强调供电损失概率(LPSP)和平准化能源成本(LCOE)的最小化。M-MOPSO 算法引入了动态惯性权重、独特的资源库更新机制和基于支配地位的个人最佳更新策略,这些因素共同提高了该算法的性能。与 PSO、NSGA-II、MOPSO 和混合 GA-PSO 的比较分析表明,M-MOPSO 始终能获得较低的 LPSP,尽管其 LCOE 仍然较高。在各种气候条件下进行模拟时,M-MOPSO 最佳配置能够满足社区的能源需求,而不受环境条件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信