Methane hydrate formation in amino acids / sodium montmorillonite systems

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Yun Li , Xuechi Liu , Meng Han , Zhouhua Wang , Ruixin Shi , Haoqi Liao , Bao Yuan , Pengfei Wang , Songbai Han , Jinlong Zhu
{"title":"Methane hydrate formation in amino acids / sodium montmorillonite systems","authors":"Yun Li ,&nbsp;Xuechi Liu ,&nbsp;Meng Han ,&nbsp;Zhouhua Wang ,&nbsp;Ruixin Shi ,&nbsp;Haoqi Liao ,&nbsp;Bao Yuan ,&nbsp;Pengfei Wang ,&nbsp;Songbai Han ,&nbsp;Jinlong Zhu","doi":"10.1016/j.clay.2024.107538","DOIUrl":null,"url":null,"abstract":"<div><p>To understand the occurrence of natural gas hydrates in seabed sediments, it is crucial to examine the mechanisms of methane (CH<sub>4</sub>) hydrate formation in sodium montmorillonite (Na-Mt) systems in the presence of amino acid. Accordingly, this study employed kinetics experiments and molecular dynamics simulations to investigate CH<sub>4</sub> hydrate nucleation and growth in an <img>Na-Mt system containing alanine (Ala), leucine (Leu), and phenylalanine (Phe), respectively. Kinetics and Raman experiments showed that, compared with Ala, Leu and Phe enhanced hydrogen bonding between water molecules surrounding <img>Na-Mt. This enhancement was due to the long carbon chain of Leu and the phenyl ring of Phe and facilitated CH<sub>4</sub> hydrate formation. Moreover, in the <img>Na-Mt system, Ala reduced CH<sub>4</sub> consumption, whereas Leu and Phe increased CH<sub>4</sub> consumption. Molecular dynamics simulations revealed that the strength of electrostatic interactions between the negatively charged <img>Na-Mt surface and the functional groups of amino acids affected the distribution of amino acids, thereby altering CH<sub>4</sub> aggregation and CH<sub>4</sub> hydrate nucleation processes. The strong interaction between <img>Na-Mt and Ala significantly disrupted interfacial interactions between <img>Na-Mt and water molecules. In contrast, the weaker interactions between <img>Na-Mt and Leu and Phe, respectively, meant that these amino acids affected CH<sub>4</sub> hydrate nucleation in the bulk-like solution by influencing the arrangement of water molecules. These findings indicate that interfacial interactions between <img>Na-Mt and amino acids play a crucial role in CH<sub>4</sub> hydrate formation. Overall, this study generated insights into the formation kinetics and nucleation properties of CH<sub>4</sub> hydrates in clay mineral–amino acid complexes that may increase understanding about the occurrence of natural gas hydrates in marine sediments.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"260 ","pages":"Article 107538"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724002862","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To understand the occurrence of natural gas hydrates in seabed sediments, it is crucial to examine the mechanisms of methane (CH4) hydrate formation in sodium montmorillonite (Na-Mt) systems in the presence of amino acid. Accordingly, this study employed kinetics experiments and molecular dynamics simulations to investigate CH4 hydrate nucleation and growth in an Na-Mt system containing alanine (Ala), leucine (Leu), and phenylalanine (Phe), respectively. Kinetics and Raman experiments showed that, compared with Ala, Leu and Phe enhanced hydrogen bonding between water molecules surrounding Na-Mt. This enhancement was due to the long carbon chain of Leu and the phenyl ring of Phe and facilitated CH4 hydrate formation. Moreover, in the Na-Mt system, Ala reduced CH4 consumption, whereas Leu and Phe increased CH4 consumption. Molecular dynamics simulations revealed that the strength of electrostatic interactions between the negatively charged Na-Mt surface and the functional groups of amino acids affected the distribution of amino acids, thereby altering CH4 aggregation and CH4 hydrate nucleation processes. The strong interaction between Na-Mt and Ala significantly disrupted interfacial interactions between Na-Mt and water molecules. In contrast, the weaker interactions between Na-Mt and Leu and Phe, respectively, meant that these amino acids affected CH4 hydrate nucleation in the bulk-like solution by influencing the arrangement of water molecules. These findings indicate that interfacial interactions between Na-Mt and amino acids play a crucial role in CH4 hydrate formation. Overall, this study generated insights into the formation kinetics and nucleation properties of CH4 hydrates in clay mineral–amino acid complexes that may increase understanding about the occurrence of natural gas hydrates in marine sediments.

氨基酸/钠蒙脱石体系中甲烷水合物的形成
要了解海底沉积物中天然气水合物的发生,研究氨基酸存在下钠蒙脱石(Na-Mt)体系中甲烷(CH4)水合物的形成机制至关重要。因此,本研究采用动力学实验和分子动力学模拟分别研究了含有丙氨酸(Ala)、亮氨酸(Leu)和苯丙氨酸(Phe)的 Na-Mt 体系中 CH4 水合物的成核和生长。动力学和拉曼实验表明,与 Ala 相比,Leu 和 Phe 增强了 Na-Mt 周围水分子之间的氢键,这种增强是由于 Leu 的长碳链和 Phe 的苯基环,促进了 CH4 水合物的形成。此外,在 Na-Mt 体系中,Ala 减少了 CH4 的消耗,而 Leu 和 Phe 增加了 CH4 的消耗。分子动力学模拟显示,带负电荷的 Na-Mt 表面与氨基酸官能团之间的静电相互作用强度会影响氨基酸的分布,从而改变 CH4 的聚集和 CH4 水合物的成核过程。Na-Mt 与 Ala 之间的强相互作用极大地破坏了 Na-Mt 与水分子之间的界面相互作用。相比之下,Na-Mt 与 Leu 和 Phe 之间的相互作用分别较弱,这意味着这些氨基酸通过影响水分子的排列来影响块状溶液中的 CH4 水合物成核。这些发现表明,Na-Mt 与氨基酸之间的界面相互作用在 CH4 水合物的形成过程中起着至关重要的作用。总之,本研究有助于深入了解粘土矿物-氨基酸复合物中 CH4 水合物的形成动力学和成核特性,从而加深对海洋沉积物中出现天然气水合物的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
文献相关原料
公司名称 产品信息 采购帮参考价格
上海源叶 sodium Mt (Na-Mt)
阿拉丁 alanine (Ala)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信