Modelling vegetation dynamics for future climates in Australian catchments: Comparison of a conceptual eco-hydrological modelling approach with a deep learning alternative

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hui Zou , Lucy Marshall , Ashish Sharma , Jie Jian , Clare Stephens , Philippa Higgins
{"title":"Modelling vegetation dynamics for future climates in Australian catchments: Comparison of a conceptual eco-hydrological modelling approach with a deep learning alternative","authors":"Hui Zou ,&nbsp;Lucy Marshall ,&nbsp;Ashish Sharma ,&nbsp;Jie Jian ,&nbsp;Clare Stephens ,&nbsp;Philippa Higgins","doi":"10.1016/j.envsoft.2024.106179","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamically simulating leaf area index assists in modelling the feedbacks between eco-hydrologic and climatic processes. The particular challenge for Australia is the prevalence of arid and semi-arid ecosystems where water availability plays a crucial role in vegetation productivity. To understand whether existing LAI models can capture plant dynamics under changing climates, we tested two competing models across Australia's different climate zones: a conceptual eco-hydrologic model that applies water use efficiency term to relate LAI to water uptake, and a deep learning approach. An initial virtual catchment experiment with deep learning showed that it only uses information from potential evapotranspiration. For future climates, the conceptual model captured a negative trend and increasing variance in LAI, which is plausible given projected rainfall changes, while deep learning did not. Our study demonstrated an example of ‘right answer for the wrong reasons’, and the importance of incorporating knowledge of water-carbon coupling for appropriate scenarios.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106179"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002408/pdfft?md5=a17aa7bf042ec562a0e4f5935767b5b9&pid=1-s2.0-S1364815224002408-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002408","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamically simulating leaf area index assists in modelling the feedbacks between eco-hydrologic and climatic processes. The particular challenge for Australia is the prevalence of arid and semi-arid ecosystems where water availability plays a crucial role in vegetation productivity. To understand whether existing LAI models can capture plant dynamics under changing climates, we tested two competing models across Australia's different climate zones: a conceptual eco-hydrologic model that applies water use efficiency term to relate LAI to water uptake, and a deep learning approach. An initial virtual catchment experiment with deep learning showed that it only uses information from potential evapotranspiration. For future climates, the conceptual model captured a negative trend and increasing variance in LAI, which is plausible given projected rainfall changes, while deep learning did not. Our study demonstrated an example of ‘right answer for the wrong reasons’, and the importance of incorporating knowledge of water-carbon coupling for appropriate scenarios.

澳大利亚流域未来气候的植被动态建模:概念生态水文建模方法与深度学习替代方法的比较
动态模拟叶面积指数有助于模拟生态-水文和气候过程之间的反馈。澳大利亚面临的特殊挑战是干旱和半干旱生态系统的普遍存在,在这些生态系统中,水的供应对植被生产力起着至关重要的作用。为了了解现有的 LAI 模型能否捕捉到气候不断变化下的植物动态,我们在澳大利亚的不同气候区测试了两种相互竞争的模型:一种是概念性生态水文模型,该模型应用水分利用效率术语将 LAI 与水分吸收联系起来;另一种是深度学习方法。深度学习的初始虚拟集水区实验表明,它只使用了潜在蒸散量的信息。对于未来气候,概念模型捕捉到了 LAI 的负趋势和不断增加的差异,考虑到预测的降雨量变化,这是合理的,而深度学习却捕捉不到。我们的研究展示了一个 "错误原因的正确答案 "的例子,以及将水碳耦合知识纳入适当情景的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信