Causal inference on human behaviour

IF 21.4 1区 心理学 Q1 MULTIDISCIPLINARY SCIENCES
Drew H. Bailey, Alexander J. Jung, Adriene M. Beltz, Markus I. Eronen, Christian Gische, Ellen L. Hamaker, Konrad P. Kording, Catherine Lebel, Martin A. Lindquist, Julia Moeller, Adeel Razi, Julia M. Rohrer, Baobao Zhang, Kou Murayama
{"title":"Causal inference on human behaviour","authors":"Drew H. Bailey, Alexander J. Jung, Adriene M. Beltz, Markus I. Eronen, Christian Gische, Ellen L. Hamaker, Konrad P. Kording, Catherine Lebel, Martin A. Lindquist, Julia Moeller, Adeel Razi, Julia M. Rohrer, Baobao Zhang, Kou Murayama","doi":"10.1038/s41562-024-01939-z","DOIUrl":null,"url":null,"abstract":"Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies. In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":"8 8","pages":"1448-1459"},"PeriodicalIF":21.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Human Behaviour","FirstCategoryId":"102","ListUrlMain":"https://www.nature.com/articles/s41562-024-01939-z","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies. In this Review, Drew Bailey et al. present an accessible, non-technical overview of key challenges for causal inference in studies of human behaviour as well as methodological solutions to these challenges.

Abstract Image

人类行为的因果推理
对人类行为进行因果推断非常困难,因为导致行为的无数因素之间存在复杂的相互作用,包括外部世界的因素和我们的内部状态。我们从非技术性的概念角度概述了人类行为因果推断所面临的挑战和机遇。这些挑战包括我们模棱两可的因果语言和思维、统计控制不足或控制过度、效应异质性、干扰、效应的时间尺度以及复杂的处理方法。我们解释了为应对其中一个挑战而优化的方法如何经常加剧其他问题。因此,我们认为,明确指出研究问题是改进数据因果推断的关键。我们提出了一种三角测量方法,将(准)实验研究得出的因果估计与观察数据和理论假设得出的因果估计进行比较。通过这种方法,可以系统地研究可能导致不同研究的估计值趋同或偏离的理论和方法因素。在这篇综述中,德鲁-贝利等人以通俗易懂、非技术性的方式概述了人类行为研究中因果推断所面临的主要挑战,以及应对这些挑战的方法论解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Human Behaviour
Nature Human Behaviour Psychology-Social Psychology
CiteScore
36.80
自引率
1.00%
发文量
227
期刊介绍: Nature Human Behaviour is a journal that focuses on publishing research of outstanding significance into any aspect of human behavior.The research can cover various areas such as psychological, biological, and social bases of human behavior.It also includes the study of origins, development, and disorders related to human behavior.The primary aim of the journal is to increase the visibility of research in the field and enhance its societal reach and impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信