{"title":"Wideband 32-Element 3D-MIMO antenna for vehicular applications","authors":"Arun Kumar Saurabh , Rupam Bharati , Manoj Kumar Meshram","doi":"10.1016/j.aeue.2024.155475","DOIUrl":null,"url":null,"abstract":"<div><p>A wideband 32-element vehicular 3D-MIMO system is proposed by utilizing eight-element MIMO antenna for Internet-of-Vehicle/Vehicle-to-Everything. The eight-element MIMO antenna consists of four sets of two identical antenna elements are arranged 90<sup>0</sup> symmetrically on an octagon-shaped substrate cross-section area of 0.4374 <span><math><mrow><msubsup><mi>λ</mi><mrow><mn>0</mn></mrow><mn>2</mn></msubsup></mrow></math></span>. A combination of ground stubs between two same oriented antennas is loaded with shared ground at the bottom of the same substrate for better matching and low correlation, which are fed through the tapered microstrip line. Similarly, dual I-shaped stubs interconnected with shared ground for high isolation between a pair of corner elements. The proposed antenna achieved measured impedance bandwidth range (S<sub>ij</sub> ∈ <em>i</em> = <em>j</em> < − 10 dB) of 3.03–15.33 GHz with a maximum mutual coupling (S<sub>ij</sub> ∈ <em>i</em> ≠ <em>j</em>) value of − 15.5 dB. Furthermore, a set of eight-element MIMO antenna with extended ground is vertically orthogonally symmetrically rotated around the central axis, forming a 32-element 3D-MIMO antenna and its found results are almost close to eight-element antenna with an enhanced peak gain value of 12.1 dBi. The performances of the 3D-MIMO antenna with radome and large metallic sheet are also examined. The satisfactory results observed in the 3D system-in-package highlight its capability for advanced vehicular communication.</p></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"186 ","pages":"Article 155475"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124003613","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A wideband 32-element vehicular 3D-MIMO system is proposed by utilizing eight-element MIMO antenna for Internet-of-Vehicle/Vehicle-to-Everything. The eight-element MIMO antenna consists of four sets of two identical antenna elements are arranged 900 symmetrically on an octagon-shaped substrate cross-section area of 0.4374 . A combination of ground stubs between two same oriented antennas is loaded with shared ground at the bottom of the same substrate for better matching and low correlation, which are fed through the tapered microstrip line. Similarly, dual I-shaped stubs interconnected with shared ground for high isolation between a pair of corner elements. The proposed antenna achieved measured impedance bandwidth range (Sij ∈ i = j < − 10 dB) of 3.03–15.33 GHz with a maximum mutual coupling (Sij ∈ i ≠ j) value of − 15.5 dB. Furthermore, a set of eight-element MIMO antenna with extended ground is vertically orthogonally symmetrically rotated around the central axis, forming a 32-element 3D-MIMO antenna and its found results are almost close to eight-element antenna with an enhanced peak gain value of 12.1 dBi. The performances of the 3D-MIMO antenna with radome and large metallic sheet are also examined. The satisfactory results observed in the 3D system-in-package highlight its capability for advanced vehicular communication.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.