Ziyu Zhao, Leilei Gan, Tao Shen, Kun Kuang, Fei Wu
{"title":"Deconfounded hierarchical multi-granularity classification","authors":"Ziyu Zhao, Leilei Gan, Tao Shen, Kun Kuang, Fei Wu","doi":"10.1016/j.cviu.2024.104108","DOIUrl":null,"url":null,"abstract":"<div><p>Hierarchical multi-granularity classification (HMC) assigns labels at varying levels of detail to images using a structured hierarchy that categorizes labels from coarse to fine, such as [“Suliformes”, “Fregatidae”, “Frigatebird”]. Traditional HMC methods typically integrate hierarchical label information into either the model’s architecture or its loss function. However, these approaches often overlook the spurious correlations between coarse-level semantic information and fine-grained labels, which can lead models to rely on these non-causal relationships for making predictions. In this paper, we adopt a causal perspective to address the challenges in HMC, demonstrating how coarse-grained semantics can serve as confounders in fine-grained classification. To comprehensively mitigate confounding bias in HMC, we introduce a novel framework, Deconf-HMC, which consists of three main components: (1) a causal-inspired label prediction module that combines fine-level features with coarse-level prediction outcomes to determine the appropriate labels at each hierarchical level; (2) a representation disentanglement module that minimizes the mutual information between representations of different granularities; and (3) an adversarial training module that restricts the predictive influence of coarse-level representations on fine-level labels, thereby aiming to eliminate confounding bias. Extensive experiments on three widely used datasets demonstrate the superiority of our approach over existing state-of-the-art HMC methods.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"248 ","pages":"Article 104108"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001899","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical multi-granularity classification (HMC) assigns labels at varying levels of detail to images using a structured hierarchy that categorizes labels from coarse to fine, such as [“Suliformes”, “Fregatidae”, “Frigatebird”]. Traditional HMC methods typically integrate hierarchical label information into either the model’s architecture or its loss function. However, these approaches often overlook the spurious correlations between coarse-level semantic information and fine-grained labels, which can lead models to rely on these non-causal relationships for making predictions. In this paper, we adopt a causal perspective to address the challenges in HMC, demonstrating how coarse-grained semantics can serve as confounders in fine-grained classification. To comprehensively mitigate confounding bias in HMC, we introduce a novel framework, Deconf-HMC, which consists of three main components: (1) a causal-inspired label prediction module that combines fine-level features with coarse-level prediction outcomes to determine the appropriate labels at each hierarchical level; (2) a representation disentanglement module that minimizes the mutual information between representations of different granularities; and (3) an adversarial training module that restricts the predictive influence of coarse-level representations on fine-level labels, thereby aiming to eliminate confounding bias. Extensive experiments on three widely used datasets demonstrate the superiority of our approach over existing state-of-the-art HMC methods.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems