On a conjecture of TxGraffiti: Relating zero forcing and vertex covers in graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Boris Brimkov , Randy Davila , Houston Schuerger , Michael Young
{"title":"On a conjecture of TxGraffiti: Relating zero forcing and vertex covers in graphs","authors":"Boris Brimkov ,&nbsp;Randy Davila ,&nbsp;Houston Schuerger ,&nbsp;Michael Young","doi":"10.1016/j.dam.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we showcase the process of using an automated conjecturing program called <em>TxGraffiti</em> written and maintained by the second author. We begin by proving a conjecture formulated by <em>TxGraffiti</em> that for a claw-free graph <span><math><mi>G</mi></math></span>, the vertex cover number <span><math><mrow><mi>β</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is greater than or equal to the zero forcing number <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Our proof of this result is constructive, and yields a polynomial time algorithm to find a zero forcing set with cardinality <span><math><mrow><mi>β</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We also use the output of <em>TxGraffiti</em> to construct several infinite families of claw-free graphs for which <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>β</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Additionally, inspired by the aforementioned conjecture of <em>TxGraffiti</em>, we also prove a more general relationship between the zero forcing number and the vertex cover number for any connected graph with maximum degree <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, namely that <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mi>β</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>+1.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"359 ","pages":"Pages 290-302"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003585","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we showcase the process of using an automated conjecturing program called TxGraffiti written and maintained by the second author. We begin by proving a conjecture formulated by TxGraffiti that for a claw-free graph G, the vertex cover number β(G) is greater than or equal to the zero forcing number Z(G). Our proof of this result is constructive, and yields a polynomial time algorithm to find a zero forcing set with cardinality β(G). We also use the output of TxGraffiti to construct several infinite families of claw-free graphs for which Z(G)=β(G). Additionally, inspired by the aforementioned conjecture of TxGraffiti, we also prove a more general relationship between the zero forcing number and the vertex cover number for any connected graph with maximum degree Δ3, namely that Z(G)(Δ2)β(G)+1.

关于 TxGraffiti 的一个猜想:图中零强迫与顶点覆盖的关系
在本文中,我们展示了由第二作者编写和维护的名为 TxGraffiti 的自动猜想程序的使用过程。我们首先证明了 TxGraffiti 提出的一个猜想:对于无爪图 G,顶点覆盖数 β(G) 大于或等于零强制数 Z(G)。我们对这一结果的证明是构造性的,并产生了一种多项式时间算法,可以找到具有心数 β(G) 的零强制集。我们还利用 TxGraffiti 的输出构建了 Z(G)=β(G)的多个无爪图无限族。此外,受 TxGraffiti 上述猜想的启发,我们还证明了任何最大阶数 Δ≥3 的连通图的零强制数和顶点覆盖数之间更一般的关系,即 Z(G)≤(Δ-2)β(G)+1 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信